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Preface 

This monograph is based on the theses ofOerlemans (1992) and Spieksma 
(1992). In this second edition a new chapter (Chapter 5) is added which in
vestigates basic models for tool-loading problems. Further, we have revised 
and updated the other chapters. We would like to thank the many individ
uals, at the University of Limburg or elsewhere, who have contributed to 
the genesis of this work. We are especially indebted to Antoon Kolen, who 
co-authored Chapters 2 and 9, and who delivered numerous comments on 
all other parts of the monograph. We also want to thank Koos Vrieze and 
Hans-Jiirgen Bandelt for their constructive remarks. 
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Chapter 1 

Automated manufacturing 



1.1 Introduction 

During the last two decades, the impact of automation on manufacturing 
has sharply increased. Nowadays, computers can playa role in every aspect 
of the production process, ranging from the design of a new product to the 
inspection of its quality. In some types of industry automated manufacturing 
has a long history, for instance in chemical or oil-refining industries. How
ever, in the batch-manufacturing industries, like the metalworking industry 
or the electronics industry, the concept of automated manufacturing was in
troduced only in the 1970's, causing a profound effect on manufacturing and 
the way it is organized. So-called flexible manufacturing systems (FMSs) 
emerged as a critical component in the development towards the "factory of 
the future". Our focus will be on this type of industry. On the one hand, 
automated manufacturing has a wide variety of potential benefits to offer to 
batch-manufacturing industries. One of the most important advantages is 
the increased ability to respond to changes in demand. This is important 
in view of today's fast changing demand and short product cycles. Other 
possible advantages include shorter lead times, lower inventories and higher 
machine utilization. On the other hand, it is not an easy task to make an 
efficient use of the newly offered possibilities. In particular, planning the 
use of a system consisting of a number of connected, complicated machines 
using limited resources can constitute a formidable challenge. 

In this monograph we intend to illustrate the role that quantitative meth
ods, and more specifically combinatorial optimization techniques, can play 
in the solution of various planning problems encountered in this framework. 
As a common thread, we concentrate throughout the monograph on models 
arising in the automated assembly of printed circuit boards (PCBs). Chapter 
2 describes a typical production process for PCBs, and some of the planning 
problems to which this process gives rise. It also presents several optimiza
tion models which can be used for handling these problems. Two of these 
models are studied in more detail in Chapters 3 and 4. Chapters 5 to 9 are 
devoted to so-called tool-loading problems. This class of problems occupies a 
very central place in the tactical planning phase for most highly automated, 
flexible production systems. Chapters 5 to 9 are therefore presented in a 
rather general setting, and use a terminology pertaining to flexible manu
facturing systems rather than to the more particular case of PCB assembly 
machines. Section 1.3 hereunder contains a more precise, chapter-by-chapter 
overview of the contents of this monograph. But before going into this, we 
first propose, in the next section, a very brief review of the literature devoted 
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to production planning for FMSs. 

1.2 Production planning for FMSs 

In this section we review some of the literature concerning planning and 
control of FMSs. First, we describe an FMS (Subsection 1.2.1). Next, in 
Subsection 1.2.2, we review a number of different strategies (or methodolo
gies) proposed in the literature to cope with FMS planning problems. The 
use of a so-called hierarchical approach is advocated in most papers. Sub
sections 1.2.3 and 1.2.4 focus on planning problems arising at the tactical 
and operational level of the decision hierarchy. 

1.2.1 What is an FMS? 

A flexible manufacturing system is an integrated, computer-controlled com
plex of numerically controlled machines and automated material handling 
devices that can simultaneously process "medium-sized volumes of a variety 
of part types (Stecke, 1983). As Gerwin (1982) and Huang and Chen (1986) 
point out, FMSs are an attempt to solve the production problem of mid
volume (200-20,000 parts per year) and midvariety parts, for which neither 
the high-production rate transfer lines nor the highly flexible stand-alone 
numerically controlled machines are suitable. The aim is to achieve the effi
ciency of mass-production, while utilizing the flexibility of manual job shop 
production. 

An FMS consists of a number of machines or work stations that are used 
to perform operations on parts. Each operation requires a number of tools, 
that can be stored in the limited capacity tool magazine of the machines. 
An automatic tool interchanging device quickly interchanges the tools dur
ing production. This rapid interchange facility enables a machine to perform 
several operations with virtually no setup time between operations, provided 
that the tools needed for these operations are present in the tool magazine. 
(We will see in the remainder of this monograph that in PCB assembly sys
tems the so-called feeders, from which electronic components to be mounted 
on the PCB are fed to the machine, playa very similar role to that of tools 
in a classical FMS.) Parts are moved automatically to the machines by a 
transportation system or a Material Handling System (MHS). 'A number of 
buffer places or an Automated Storage and Retrieval System (ASRS) are 
also added to the system, either at a central location or at each machine. 
In some FMSs, tools are also stored at a central tool store and delivered to 
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machines by a special delivery system (Buzacott and Yao, 1986). Finally, a 
network of supervisory computers takes care of the control of tools, parts, 
MHS and machines. The development of FMSs goes along with the other 
developments in automated manufacturing. The first systems appeared in 
the 1960's; one of the earliest FMSs, which was designed to process constant 
speed drive housings for aircraft, was installed by Sunstrand in 1964 (Huang 
and Chen, 1986). In the late 1970's more systems were developed, while 
the last decade was mainly devoted to refinement of the systems. Emphasis 
has shifted from hardware issues to the development of control systems and 
refinement of the software packages (Huang and Chen, 1986). A number of 
authors have written excellent books in which detailed descriptions of FMSs 
are given (Ranky, 1983; Charles Stark Draper Laboratory, 1984; Hartley, 
1984; Warnecke and Steinhilper, 1985). Also, several authors have given 
classifications of FMSs (Groover, 1980; Dupont-Gatelmand, 1982; Browne, 
Dubois, Rathmill, Sethi and Stecke, 1984). 

1.2.2 The hierarchical approach 

As already pointed out, substantial benefits can be gained by using FMSs. 
However, these benefits can only be obtained if the FMS is properly imple
mented and managed. The successful implementation of an FMS requires 
effective solutions to the many technical, organizational and planning prob
lems that arise when a manufacturer wants to introduce flexible manufactur
ing technology. Several authors have presented methodologies for and clas
sification of FMS design, planning, scheduling and control problems (Suri 
and Whitney, 1984; Kusiak, 1985a; Stecke, 1985; Suri, 1985; Buzacott and 
Yao, 1986; Kusiak, 1986; Van Looveren, Gelders and Van Wassenhove, 1986; 
Singhal, Fine, Meredith and Suri, 1987; Stecke, 1988), which are sometimes 
complementary. Most surveys describe some kind of hierarchical decision 
structure, relating to a variety of decisions that have to be taken concerning 
long-term, medium-term or short-term decisions. One of the main reasons 
for decomposing the general planning problem is that this problem is too 
complex to be solved globally. In the decomposition schemes, a number of 
hierarchically coupled subproblems are identified, each of which is easier to 
solve than the global problem. By solving these subproblems consecutively, 
a solution to the global problem can be found. Of course, one cannot expect 
this solution to be globally optimal, even if all subproblems are solved to 
optimality. Nevertheless, the hierarchical approach seems to be a fertile and 
appealing way to tackle hard problems. The differences between the dif-
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ferent methodologies mentioned before concern the number of levels or the 
interpretation of a specific level. We now discuss some general classification 
schemes. In our discussion we basically use the framework of Van Looveren 
et al. (1986). They rely on the classical three level view ofthe organization 
(Holstein, 1968) to identify subproblems, and thus establish three levels of 
decision making, namely the strategic, tactical and operational levels. The 
strategic level relates to long-term decisions taken by the top management, 
which influence the basic flexibility of the FMS. Problems involved concern 
the design and selection of the equipment and of the products that have to be 
manufactured. On the tactical level, the medium-term planning problems 
are addressed. Decisions taken at this level concern the off-line planning 
of the production system. Van Looveren et al. (1986) distinguish on this 
level between the batching problem and the loading problem. The bat ching 
problem is concerned with the splitting of the production orders into batches 
such that orders are performed on time given the limited available resources. 
The loading problem takes care of the actual setup of the system given the 
batches that are formed. Planning on the operational level is concerned 
with the detailed decision making required for the real-time operation of the 
system. A release strategy has to be developed, in which one decides which 
parts are fed into the system (release problem). Next the dispatching problem 
has to be solved to decide on the actual use of the production resources like 
machines, buffers and the MHS. Buzacott and Yao (1986) give a classification 
of analytical models that can be used for establishing basic design concepts, 
detailed design, scheduling and control. Suri and Whitney (1984) describe in 
detail how to integrate the FMS software and hardware in the organizational 
hierarchy. They emphasize the value of the decision support systems as an 
integral part of the FMS. Stecke (1985) distinguishes four types of problems: 
design, planning, scheduling and control. This description closely fits to the 
decision structure of Van Looveren et al. (1986). Stecke and Solberg (1981), 
Stecke (1983; 1988) and Berrada and Stecke (1986)) have performed detailed 
studies on a number of these subproblems. Kusiak (1986) makes a distinc
tion between design and operational problems. The former relate to strategic 
decisions concerning the economic justification of the system and the design 
and selection of parts and equipment. The term operational refers to prob
lems on the tactical and operational levels, as defined by Van Looveren et al. 
(1986). Kusiak (1986) splits the operational problems into four sublevels, 
that consider aggregate planning, resource grouping, disaggregate planning 
(bat ching and loading) and scheduling of equipments. Kiran and Tansel 
(1986) use a five level decision hierarchy linked to that of Van Looveren 
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et al. (1986). They distinguish between design, aggregate planning, sys
tem setup, scheduling and control, where design concerns the strategic level, 
aggregate planning and system setup take place on the tactical level and 
scheduling and control are on the operational level. Singhal, Fine, Meredith 
and Suri (1987) discuss the problems brought forward by Buzacott and Yao 
(1986) and discuss the role of MSjOR techniques in the design, operation 
and control of automated manufacturing systems. Zijm (1988) also discusses 
problems related to the justification, design and operation of FMSs and gives 
an overview of related literature. Jaikumar and Van Wassenhove (1989) give 
a different outlook on FMS problems. They also present a three level model 
for strategic, tactical and operational planning. But, instead of stressing the 
complexity of FMS problems, they emphasize the use of simple models. They 
argue that scheduling theory and algorithms are quite sufficient for the task. 
Several other authors have used the hierarchy presented by Van Looveren 
et al. (1986) (see Aanen (1988), Van Vliet and Van Wassenhove (1989) and 
Zeestraten (1989». A large number of mathematical and methodological 
tools have been used to describe and solve FMS problems on the strategic, 
tactical and operational level. The basic tools and techniques are (see e.g. 
Kusiak (1986»: (1) Mathematical programming; (2) Simulation; (3) Queu
ing networks; (4) Markov processes; (5) Petri nets; (6) Artificial intelligence; 
(7) Perturbation analysis. 

In this monograph we use mathematical programming techniques to solve 
problems arising at the tactical and operational level in planning an FMS. 
Let us therefore focus in the next subsection on the specific production 
planning problems arising at these levels. 

1.2.3 Tactical planning 

A lot of efforts have been devoted to tactical planning problems for FMSs. 
In this subsection we review several solution approaches to tactical planning 
problems. Special attention is given to the treatment of tooling restrictions, 
because these problems are the main focus of chapters 5 - 9 of this mono
graph. 

Van Looveren et al. (1986) split tactical planning into a batching prob
lem and a loading problem. The batching problem concerns the p~titioning 
of the parts that must be produced into batches, taking into account the due 
dates of the parts and the availability of fixtures and pallets. The production 
resources are also split into a number of b~tches. Given these batches, the 
loading problem is solved, i.e. one decides in more detail how the batches 
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are to be manufactured. Machines and tools may be pooled in groups that 
perform the same operations, parts are assigned to machine groups and the 
available fixtures and pallets are assigned to parts. Stecke (1983) refers to 
tactical planning as the system setup problem. She considers five subprob
lems: (1) Part type selection problem; (2) Machine grouping problem; (3) 
Production ratio (part mix) problem; (4) Resource allocation problem; (5) 
Loading problem. In the part type selection problem a subset of parts is de
termined for immediate production. Grouping of the machines into groups of 
identical machines is pursued to increase system performance (see Stecke and 
Solberg (1981) and Berrada and Stecke (1986)). The production ratio prob
lem decides on the ratios in which the parts that are selected are produced. 
Allocation of pallets and fixtures takes place in the resource allocation prob
lem. The loading problem concerns the allocation of operations (that have 
to be performed on selected parts) and tools among the machines, subject 
to technological constraints such as the capacity of the tool magazine. A lot 
of attention has been devoted to the solution of these subproblems; we now 
review some important contributions in this area. 

In Stecke (1983) nonlinear 0-1 mixed-integer models are proposed for the 
grouping and the loading problems. Linearization techniques are used for 
solving these problems. Berrada and Stecke (1986) develop a branch-and
bound procedure for solving the loading problem. Whitney and Gaul (1985) 
propose a sequential decision procedure for solving the batching (part type 
selection) problem. They sequentially assign part types to batches according 
to a probabilistic function, which is dependent on the due date of the part, 
the tool requirements of the part and an index describing whether a part is 
easy to balance with parts already selected. Chakravartyand Shtub (1984) 
give several mixed-integer programming models for batching and loading 
problems. Kusiak (1985c) also uses group technology approaches for group
ing parts into families (see also Kumar, Kusiak and Vanelli (1986)). Am
mons, Lofgren and McGinnis (1985) present a mixed-integer formulation for 
a large machine loading problem and propose three heuristics for solving 
the problem. Rajagopalan (1985; 1986) proposes mixed-integer program
ming formulations for the part type selection, production ratio and loading 
problems. The first formulation is used to obtain an optimal part-mix for 
one planning period. A second formulation is presented to get a production 
plan for the entire period, which is optimal with respect to the total com
pletion time (including processing and setup time). Two types of sequential 
heuristics are presented to solve the formulations. Part type priorities are 
determined by considering either the number of tool slots required or the 
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processing times on the different machines. Hwang (1986) formulates a 0-1 
integer programming model for the part type selection problem. A batch is 
formed by maximizing the number of parts that can be processed given the 
aggregate tool magazine capacity of the machines. In Hwang and Shogan 
(1989) this study is extended and Lagrangian relaxation approaches are com
pared to solve the problem. Kiran and Tansel (1986) give an integer pro
gramming formulation for the system setup problem. They consider the part 
type selection, production ratio, resource allocation and loading problems. 
The objective is to maximize the number of part types produced during the 
following planning period. All parts of one part type must be processed in 
one planning period. Kiran and Tansel (1986) propose to solve the integer 
programming formulation using decomposition techniques. Stecke and Kim 
(1988) study the part type selection and production ratio problem. They 
propose a so-called flexible approach. Instead of forming batches, parts 'flow 
gradually'in the system. Tools can be replaced during production and not 
only at the start of a planning period. This offers the possibility to replace 
tools on some machines while production continues on the other machines. 
The objective is to balance the workloads of the machines. As soon as the 
production requirements of a part type are reached the model is solved again 
to determine new production ratios. Simulations are performed to compare 
the flexible and various bat ching approaches (Rajagopalan, 1985; Whitney 
and Gaul, 1985; Hwang, 1986). System utilization appears to be higher for 
the flexible approach for the types of FMSs considered. Jaikumar and Van 
Wassenhove (1989) propose a three level model. On the first level the parts 
selected for production on the FMS and production requirements are set. A 
mixed-integer program is proposed that is solved by rounding off the solution 
values of the linear relaxation. The part type selection and loading prob
lems are solved on the second level. The objective is to maximize machine 
utilization. The scheduling problem is solved at the third level. Feedback 
mechanisms provide feasibility of the solutions on all levels. Kim and Yano 
(1992) also describe an iterative approach that solves the part type selection, 
machine grouping and loading problems. 

The most discussed planning problems are the part. type selection problem 
(often solved simultaneously with the production ratio problem) and the 
loading problem. Much of the present monograph, in particular Chapters 5 
- 9, will concentrate on tool loading models; for a further discussion of the 
topic we refer to these chapters and the references therein. 
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1.2.4 Operational planning 

Operational planning is concerned with short-term decisions and real-time 
scheduling of the system. Van Looveren et al. (1986) distinguish a release 
and a dispatching problem. The release problem decides on the release strat
egy that controls the flow of parts into the system. This flow is limited for 
instance by the availability of pallets and fixtures. The dispatching prob
lem relates to decisions concerning the use of machines, buffers and MHS. 
Procedures that have to be carried out in case of machine or system failure 
are taken care of within the dispatching problem. Stecke (1983) gives a sim
ilar division of operational problems into scheduling and control problems. 
Scheduling problems concern the flow of parts through the system once it 
has been set up (at the tactical level). Control problems are associated 
with monitoring the system and keeping track of production to be sure that 
requirements and due dates are met. 

Due to the huge number of interactions and the possibility of distur
bances, the operational problems are complex. Simulation is often used to 
determine the performance of solution procedures for the release and dis
patching problem. Chang, Sullivan, Bagchi and Wilson (1985) describe the 
dispatching problem as a mixed-integer programming model, which is solved 
using heuristics (see also Greene and Sadowski (1986) and Bastos (1988». 

The dispatching problem is often solved using (simple) dispatching rules. 
The purpose of these rules is to generate feasible schedules, not necessarily 
optimal ones. A lot of attention has been paid to the evaluation of such 
scheduling rules (see e.g. Panwalker and Iskander (1977), Stecke and Solberg 
(1981), Akella, Choong and Gershwin (1984), Shanker and Tzen (1985), 
Zeestraten (1989) and Montazeri and Van Wassenhove (1990». Zijm (1988) 
and Blazewicz, Finke, Haupt and Schmidt (1988) give an overview on new 
trends in scheduling, in particular as they relate to FMS scheduling. A 
strong interdependence exists b~tween tactical and operational planning. 
In Spieksma, Vrieze and Oerlemans (1990) a model is presented that can 
be used for simultaneously formulating the system setup and scheduling 
problems. 

1.3 Overview of the monograph 

We have seen that FMS planning problems have a complex nature. In the 
previous section we presented an overview of hierarchical approaches to the 
planning process. Using a hierarchical framework may be helpful for iden-
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tifying and understanding the fundamental underlying problems. In this 
monograph a number of such subproblems are analyzed. In Chapter 2, a 
hierarchical procedure is presented to solve a real-world production problem 
in the electronics industry. Each of Chapters 3 and 4 deals more extensively 
with a specific subproblem arising in this hierarchy. Chapter 5 investigates 
basic models for tool-loading problems. In Chapters 6 - 9 two FMS tool load
ing problems are studied in detail. The job grouping problem is discussed 
in Chapters 6, 7 and 8. In Chapter 9 another loading problem is studied, 
namely the problem of minimizing the number of tool switches. We take 
now a short walk along these chapters. 

In Chapter 2, a throughput rate (production rate) optimization problem 
for the automated assembly of printed circuit boards (PCBs) is investigated. 
PCBs are widely applied in consumer electronics (e.g. computers and hi-fi) 
and the professional industry (e.g. telecommunications). The production 
of PCBs heavily relies on the use of CNC machines and the technology is 
continuously updated (Mullins, 1990). As mentioned by Van Laarhoven and 
Zijm (1993) production preparation for the assembly of PCBs is comparable 
to the system setup problem in (other) FMSs, although the type of industry 
is quite different from the metal working industry, which is the main area 
of application for FMSs. We assume that the part type selection problem 
has been solved (only one part type will be produced), as well as the ma
chine grouping problem (a line of machines is available). What remains to 
be solved is a loading problem, which consists of the assignment of parts and 
equipments to the machines, taking some sequencing aspects into account. 
A more detailed description is as follows. A line of machines is devoted to 
the assembly of one type of PCBs. An automated transport band is used 
to carry each PCB from one machine to the next. The assembly of an indi
vidual PCB consists of inserting electronic components of prespecified types 
into prescribed locations on the board. In order to handle the components, 
each machine is equipped with a device called its arm. This arm picks com
ponents from so-called feeders, moves to the appropriate locations, inserts 
the components into the board and moves back to the feeders to pick new 
components. Each feeder delivers components of a certain type (one type 
per feeder). Prior to the operation, the feeders are placed in the slots ofthe 
machine; each machine has a row of slots available, of which each feeder oc
cupies 1,2 or even more adjacent slots. A sequence of operations consisting 
of picking components from feeders, moving to the appropriate locations, 
and inserting them into the board is called a pick-and-place round. Further, 
in the system under study, the arm of each machine has three heads. Each 
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head can carry one component at the time. Consequently, in one pick-and
place round three components are inserted in the board. Also, in order to be 
able to collect a component from a feeder, a head of the arm of the machine 
must be provided with some tools or equipments. Every component type can 
only be handled by a restrictive set of alternative equipments. We propose to 
decompose the resulting planning problem into the following, hierarchically 
coupled, subproblems: 

(A) determine how many components each machine should insert, and with 
what equipment; 

(B) assign feeder types to machines; 

(C) determine which components each head should insert into the board; 

(D) cluster the locations into subsets of size at most three, to be processed 
in one pick-and-place round; 

(E) determine the sequence of pick-and-place operations to be performed 
by each machine; 

(F) assign the feeders to the slots. 

Subproblems (A) and (B) determine the workload of each machine. The 
objective here is to minimize the maximum workload over all machines, 
since this is equivalent to maximizing the throughput rate. The remaining 
subproblems (C)-(F) deal with the scheduling of individual machines. In 
Chapter 2, we model more precisely each of the subproblems (A)-(F) and 
we develop heuristic approaches for their solution. The performance of our 
approach is tested on a real-world problem instance: 258 components of 39 
types have to be inserted in each PCB by a line of three machines. 

Chapter 3 in this monograph deals with subproblem (D) from the de
composition described above. This problem is a special case of the three
dimensional assignment problem (3DA), which can be described as follows 
(see also Balas and Saltzman (1991)). Given are three disjoint n-sets of 
points, and nonnegative costs associated with every triple consisting of ex
actly one point from each set. The problem is to find a minimum-cost 
collection of n triples covering each point exactly once. In subproblem (D), 
the three disjoint point-sets correspond to the locations where components 
have to be inserted by the first, second or third head respectively. The cost 
of a triple reflects the travel time of the arm between the corresponding lo
cations. Instances of subproblem (D) are specially structured instances of 
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3DA in the sense that the cost of each triple is determined by a distance 
defined on the set of all points and satisfying the triangle inequality. We 
call T a the special case of 3DA where the cost of a triple is equal to the 
sum of the distances between its points, and Sathe case where the cost of 
a triple is equal to the sum of the two smallest distances between its points. 
We prove in Chapter 3 that Ta as well as sa are NP-hard problems. For 
both Ta and sa we present two polynomial-time heuristics based on the 
solution of a small number (either two or six) of related two-dimensional as
signment problems. We prove that these heuristics always deliver a feasible 
solution whose cost is at most ~ respectively t times the optimal cost. Com
putational experiments indicate that the performance of these heuristics is 
excellent on randomly generated instances of T a and S 6.. 

Chapter 4 is devoted to the following problem. Given are n jobs which 
have to be processed on a single machine within a fixed timespan 1, 2, ... , T. 
The processing time, or length of each job equals p, with p an integer. The 
processing cost of each job is an arbitrary function of its start-time, and is 
denoted by Cjt, j = 1, ... , n, t = 1, ... , T. The problem is to schedule all jobs 
so as to minimize the sum of the processing cost. We refer to this problem 
as problem SEL (Scheduling jobs of Equal Length). It should be noted that 
SEL is a special case of a very general scheduling problem, say problem S, 
considered by Sousa and Wolsey (1992), where the jobs may have arbitrary, 
usually distinct, processing times. It is an easy observation that, if {1, ... , n} 
is any subset of the jobs occurring in S, and all jobs in {1, ... , n} have the 
same length p, then any valid inequality for SEL is also valid for S. This 
suggests that the polyhedral description presented in Chapter 4 may prove 
useful, not only when all jobs have strictly equal length, but also in case 
where the number of distinct lengths is small. SEL is also strongly related 
to subproblem (F) in the decomposition described above. This can be seen 
as follows: each feeder j requires a certain number of slots, say Pj, depend
ing on the feeder type; usually, Pj only takes a small number of values, say 
Pj E {1, 2, 3}. In order to maximize the throughput rate, it is desirable to 
position the feeders close to the locations where the corresponding compo
nents must be inserted. More precisely, for each combination of feeder j and 
slot t a cost-coefficient can be computed which captures the cost of assigning 
feeder j to slots t, t + 1, ... , t + Pj -1. It follows that finding a miniJIlum-cost 
assignment of feeders to slots is equivalent to solving a scheduling problem 
where the number of distinct processing times is small. We prove in Chapter 
4 that SEL is NP-hard already for P = 2 and Cjt E {O,1}. On the other 
hand, if the number of time-units equals np + c, where C denotes a con-
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stant, then the problem is shown to be polynomially solvable. We also study 
a 0-1 programming formulation of SEL from a polyhedral point of view. 
In particular, we show that all facets defined by set-packing inequalities 
have been previously listed by Sousa and Wolsey (1992). Two more classes 
of facet-defining inequalities (one of them exponentially large) are derived. 
The separation problem for these inequalities is solvable in polynomial time. 
Further, we show that for some special objective functions the inequalities 
in the LP-relaxation suffice to arrive at an integral solution. We also present 
some computational results on randomly generated problem instances. 

Chapter 5 presents an overview of tool loading problems that arise in 
automated manufacturing systems. A basic, one-machine, problem is identi
fied in which the tool magazine capacity constraint plays an important role. 
Different objective functions are considered, giving rise to different problems. 
In Chapter 5 the so-called batch selection problem, the job grouping problem 
and the tool switching problem are introduced and discussed. 

In Chapter 6, the job grouping problem is studied in detail. This specific 
loading problem arises at the tactical level in batch-industries. We present a 
model which aims at minimizing the number of machine setups. We assume 
that a number of jobs must processed on a machine. Each job requires a 
set of tools, which have to be present in the limited capacity tool magazine 
of the machine when the job is executed. We say that a group (batch) of 
jobs is feasible if, together, these jobs do not require more tools than can be 
placed in the tool magazine of the machine. Each tool is assumed to require 
one slot in the tool magazine. The job grouping problem is to partition 
the jobs into a minimum number of feasible groups. As noticed for instance 
by Bard (1988) for a closely related problem (the tool switching problem 
to be discussed in Chapter 9), an important occurence of the job grouping 
problem arises in the planning phase of the PCB assembly process. Suppose 
several types of PCBs are produced by an automated placement machine 
(or a line of such machines). For each type of PCB, a certain collection 
of component feeders must be placed on the machine before boards of that 
type can be produced. As the machine can only hold a limited number of 
feeders, it is usually necessary to replace some feeders when switching from 
the production of one type of boards to that of another type. Exchanging 
feeders is a time-consuming operation and it is therefore important to deter
mine a production sequence which minimizes the number of "feeder-setups". 
Identifying the feeders with tools and the PCBs with jobs, one can see that 
this type of situation gives rise to either a job grouping problem or to a tool 
switching problem (to be discussed below), depending on the characteris-
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tics of the production environment. A number of authors have suggested 
solution approaches for the problem (Hirabayashi et al., 1984; Whitney and 
Gaul, 1985; Hwang, 1986; Raj agopalan , 1986; Tang and Denardo, 1988b), 
but no strong lower bounds on the optimal number of groups were obtained 
until now. We rely on a set covering formulation of the problem (Hirabayashi 
et al., 1984), and we solve the linear relaxation of this formulation in order 
to compute tight lower bounds. Since the number of variables is potentially 
huge, we use a column generation approach. We also describe some fast and 
simple heuristics for the job grouping problem. The result of our compu
tational experiments on 550 randomly generated instances is that the lower 
bound is extremely strong: for all instances tested, the lower bound is opti
mal. The overall quality of the heuristic solutions appears to be very good 
as well. 

Chapter 7 discusses a number of extensions of the previous job grouping 
model. First we consider the job grouping problem for one machine when 
tools have different sizes (i.e., may require several slots in the tool magazine). 
Then we study the problem in case several machines are needed. The lower 
and upper bounding procedures described in Chapter 6 are generalized so 
as to apply to these cases as well. We present the results of computational 
experiments that were performed on 580 randomly generated instances. It 
appears that the lower bound is very strong and that the conclusions of 
Chapter 6 can be largely extended to this broader class of problems. 

In Chapter 8 we continue our study of the job grouping problem. Atten
tion is focused on deriving better upper bounds for the problem. A study is 
performed to determine the possibilities offered by local search approaches. 
Local search approaches explore the neighbourhood of a current solution 
in a smart way in order to improve this solution. Four local search ap
proaches, viz. a simple improvement, tabu search, simulated annealing and 
variable-depth approach are tested. Experiments are conducted to assess the 
influence of the choice of starting solutions, objective functions, neighbour
hood structures and stopping criteria. Computational experiments show 
that a majority of instances for which other (simple) heuristic procedures 
(presented in Chapters 6 and 7) do not produce optimal solutions can be 
solved optimally using a local search approach. The choice of starting solu
tion, objective function and neighbourhood structure seems to have'far more 
impact on the solution quality than the local search approach itself, as long 
as some kind of local optimum evading strategy is used. 

Chapter 9 analyzes another loading problem arising in FMS planning, 
namely the tool switching problem. A batch of jobs have to be successively 
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processed on a single flexible machine. Each job requires a subset of tools, 
which have to be placed in the limited capacity tool magazine of the ma
chine before the job can be processed. The total number of tools needed 
exceed the capacity of the tool magazine. Hence, it is sometimes neces
sary to change tools between two jobs in a sequence. The tool switching 
problem is now to determine a job sequence and an associated sequence of 
loadings for the tool magazine, such that the total number of tool switches is 
minimized. This problem becomes especially crucial when the time needed 
to change a tool is significant with respect to the processing times of the 
parts, or when many small batches of different parts must be processed in 
succession. These phenomena have been observed in the metal-working in
dustry by several authors. As mentioned above in our overview of Chapter 
6, the problem also plays a prominent role in production planning for PCBs; 
Bard (1988) and Tang and Denardo (1988a) have specifically studied the 
tool switching problem. In this chapter the problem is revisited, both from 
a theoretical and from a computational viewpoint. Basic results concerning 
the computational complexity of the problem are established. For instance, 
we show that the problem is already NP-hard when the tool magazine ca
pacity is 2, and we provide a new proof of the fact that, for each fixed job 
sequence, an optimal sequence of tool loadings can be found in polynomial 
time. Links between the problem and well-known combinatorial optimization 
problems (traveling salesman, block minimization, interval matrix recogni
tion, etc.) are established and several heuristics are presented which exploit 
these special structures. Computational results are presented to compare 
the behaviour of the eight heuristic procedures. Also the influence of local 
improvement strategies is computationally assessed. 
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2.1 Introduction 

The electronics industry relies heavily on numerically controlled machines 
for the placement of electronic components on the surface of printed circuit 
boards (PCB). These placement (or mounting, or pick-and-place) machines 
automatically insert components into PCB's, in a sequence determined by 
the input program. The most recent among them are characterized by high 
levels of accuracy and speed, but their throughput rates still appear to be 
extremely sensitive to the quality of the instructions. On the other hand, 
the effective programming of the machines becomes steadily more difficult 
in view of the increasing sophistication of the available technology. The 
development of optimization procedures allowing the efficient operation of 
such placement machines therefore provides an exciting challenge for the 
operations research community, as witnessed by, e.g., the recent papers by 
Ahmadi, Grotzinger and Johnson (1988), Ball and Magazine (1988), and 
Leiprua and Nevalainen (1989). 

In this chapter we propose a hierarchical approach to the problem of 
optimizing the throughput rate of a line of several placement machines de
voted to the assembly of a single product. As usual in the study of flexible 
systems, the high complexity of the problem suggests its decomposition into 
more manageable subproblems, and accepting the solution of each subprob
lem as the starting point for the next one. Of course, this methodology 
cannot guarantee the global optimality of the final solution, even assuming 
that all subproblems are solved to optimality. This is even more true in the 
present case, where most subproblems themselves turn out to be NP-hard, 
and hence can only be approximately solved by heuristic procedures. Never
theless, such hierarchical approaches have previously proved to deliver good 
quality solutions to similarly hard problems (e.g. in VLSI-designj see Korte 
(1989)). They also offer the advantage of providing precise analytical models 
for the various facets of the global problem (see, for example, Buzacott and 
Yao (1986) for a discussion of analytical models in FMS). 

Our approach has been tested on some industrial problems, but more 
experimentation would be required in order to precisely assess the quality of 
its performance and its range of applicability. In particular, as pointed out 
by one of the referees, the validity of some of our models is conditioned by 
the validity of some exogenous assumptions about the nature of instances 
"coming up in practice" (see, for instance, Subsection 2.4.1). Even though 
these assumptions were fulfilled in the industrial settings that motivated our 
study, they may well fail to be satisfied in other practical situations. This 
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would then invalidate the use of the corresponding models. However, we 
believe that the hierarchical scheme and most of the techniques presented 
in this chapter would nevertheless remain applicable for a wide range of 
problem instances. 

We now give a brief outline of the chapter. The next section contains a 
more detailed description of the technological environment, and Section 2.3 
provides a precise statement of the problem and a brief account of previous 
related work. Sections 2.4 and 2.5 present our approach to the solution of the 
throughput rate optimization problem. Section 2.4 addresses the workload 
balancing problem for the line of machines, and Section 2.5 deals with the 
optimal sequencing of operations for individual machines. Both sections 
present mathematical models and heuristic solution methods for the various 
subproblems arising in our decomposition of the global problem. Finally, in 
Section 2.6 we describe the results supplied by our approach on a practical 
problem instance. 

2.2 Technological environment 

In this chapter, we are concerned with the automated assembly of a num
ber of identical PCB's. For our purpose, the assembly of a PCB consists 
of the insertion of electronic components of prespecified types (indexed by 
1, ... , T) into prespecified locations (indexed by 1, ... , N) on a board. Prior 
to operations, the components of different types are collected on different 
feeders (one type per feeder). Feeders are used by the placement machines 
as described below. We denote by Nt the number of components of type 
t (t = 1, .. . ,T). So, N = '£,[=1 Nt. 

We assume that a line of M placement machines is devoted to the assem
bly of the PCB's. The machines we have in mind are of the CSM (Component 
Surface Mounting) family. They feature a worktable, a number S of feeder 
slots, and three pick-and-place heads (see Figure 2.1). 

The PCB is carried from one machine to the next by an automatic trans
portband until it comes to rest on the worktable. It stays motionless during 
the mounting operations. 

The feeder slots are fixed to two opposite sides of the worktable, S /2 
of them on each side. The feeders containing the components to be placed 
by the machine must be loaded in the slots before the mounting begins. 
Depending on its type, each feeder may require 1,2, or even more adjacent 
slots. 
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Figure 2.1: Schematic representation of a placement machine 

The pick-and-place heads are numbered from 1 to 3M, with heads 3m-2, 
3m - 1 and 3m on machine m (but, for short, we shall also refer to heads 
1,2 and 3 of each machine). They are fixed along a same arm which always 
remains parallel to the side of the worktable supporting the feeder slots. The 
arm can move in a horizontal plane above the worktable. It can perform 
vertical moves to allow the heads to pick components from the feeders or to 
insert components into the board. 

Each head can carry at most one component at a time. It must be 
equipped with certain tools (chucks and nozzles) before it can handle any 
components. The collection of tools necessary to process a given component 
we call equipment. With every component type is associated a restricted set 
of alternative equipments by which it can be handled. In most situations, 
four or five equipments suffice to mount all component types. Changing 
the equipment of a head can be done either manually or automatically, de
pending on the technology (notice that, on certain types of machines, an 
equipment change can be performed automatically for heads 1 and 2, but 
only manually for head 3). In either case, an equipment change is a time
consuming operation. 
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Consider now a typical pick-and-place operation, during which the ma
chine must place components of types i, j and k using heads 1, 2 and 3, 
respectively. Suppose, for instance, that these components are to be placed 
in the order j, i, k. Such an operation can be decomposed as follows. First, 
the arm moves until head 1 is positioned above a feeder of type i. Head 1 
picks then a component i. Two more moves of the arm between the feeder 
slots allow heads 2 and 3 to pick components j and k. Next, the arm brings 
head 2 above the location where component j is to be placed, and the in
sertion is performed. The same operation is subsequently repeated for i and 
finally for k. 

Some remarks are in order concerning such a pick-and-place round. No
tice that the picking of the components must always be performed by head 
1 first, then by head 2, then by head 3 (of course, we may decide in some 
rounds to use only one or two heads),.whereas an arbitrary sequence may 
be selected for their plC¥:ement. Once a head has been positioned by the 
arm above the required feeder slot or location, the time needed to pick or to 
place the corresponding component depends on the type of the component, 
but is otherwise constant. Thus, on one machine, the only opportunities for 
a reduction of the total pick-and-place time reside in a clever sequencing of 
the operations and assignment of the feeders to feeder slots. 

We have intentionally omitted many details in this brief description of the 
placement machines and of their functionning. For example, the insertion 
heads have to rotate to a predetermined angle before picking or placing 
components; some feeder slots or board locations are unreachable for certain 
heads; heads may be unavailable (e.g. broken) or may be assigned fixed 
equipments; the arm can only move in a limited number of directions; etc. 

Some of these features (unreachable locations, unavailable heads, etc.) 
can be easily introduced in our models by setting variables to fixed values, 
thus resulting in a simplification of these models. Others will be implicitly 
incorporated in the models. For instance, parameters of the models such as 
the pick-and-place time or the travel time between board locations will be 
assumed to take into account the rotation of the heads and the restricted 
moves of the arm. Of course, there remains a possibility that these char
acteristics could be exploited explicitly to improve the performance of the 
machines, but we did not attempt to do so. 
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2.3 The throughput rate optimization problem 

With this description of the technological constraints, we can now state a 
global throughput rate optimization problem as follows. Given the specifica
tions of a PCB and of M placement machines, determine: 

(1) an assignment of the components to the M machines; 

(2) for each machine, an assignment offeeders to feeder slots; 

(3) for each machine, a sequence of pick-and-place rounds, each round 
consisting itself of a sequence of at most three component locations 
among those assigned to the machine in step (1); 

(4) for each machine and for each pick-and-place round, an assignment of 
equipment to heads. 

These decisions are to be made so that the PCB can be mounted using all 
M machines, and so as to minimize the processing time on the bottleneck 
machine (Le., the machine with the longest processing time). 

In our solution of this problem, we shall also take into account a sec
ondary criterion, dictated by cost considerations. Because feeders are rather 
expensive, it appears desirable (at least, in the practical situations that we 
encountered) to minimize the total number offeeders used. Ideally, thus, all 
components of a same type should be processed by one machine. We shall 
show in Subsection 2.4.2 how this criterion can be accomodated. 

This formulation of the throughput rate optimization problem is pat
terned after a (confidential) report of the Philips Center for Quantitative 
Methods (CQM (1988); see also Van Laarhoven and Zijm (1993)). This re
port proposes a hierarchical decomposition of the problem, and heuristics 
for the resulting subproblems. Our decomposition, as well as all heuristics 
presented in the next two sections, are different fr()m CQM's. Our heuristics, 
in particular, rely more explicitly on the precise mathematical modeling of 
the subproblems. 

The throughput rate optimization problem is also mentioned by Ball 
and Magazine (1988), under somewhat simpler technological conditions. In 
particular, each machine has but one pick-and-place head. The' authors 
investigate in detail only the sequencing of pick-and-place operations over 
one machine (Le., our step (3) above). 

Leipiila and Nevalainen (1989) discuss our steps (2) and (3), for a different 
type of one-head machines. 
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Ahmadi et al. (1988) consider the case of one machine featuring two 
heads. They address subproblems (2), (3) and (4), but their technological 
constraints are very different from ours, and their models do not seem to be 
directly applicable in our framework. 

In the next two sections we describe our approach to the throughput 
rate optimization problem. This approach is based on a decomposition of 
the global problem into the following list of subproblems (which thus refines 
the original formulation (1)-(4) given before): 

(A) determine how many components each machine must mount, and with 
what equipments; 

(B) assign feeder types to machines; 

(C) determine what components each head must mount; 

(D) cluster the locations into subsets of size at most three, to be processed 
in one pick-and-place round; 

(E) determine the sequence of pick-and-place operations to be performed 
by each machine; 

(F) assign the feeders to feeder slots. 

Subproblems (A) and (B) in this list answer together question (1) and part 
of question (4) above. Our main concern in solving these two subproblems 
will be to achieve an approximate balance of the workload over the line of 
machines. This will be done in Section 2.4. 

Subproblems (C), (D), (E), (F) address the scheduling of individual ma
chines, and are dealt with in Section 2.5. 

In our computer experiments, the sequence of subproblems (A)-(F) is 
solved hierarchically in a single pass (except for (E) and (F); see Section 2.5). 
It may be possible to use an iterative solution procedure, and to exploit the 
solution of certain subproblems in order to revise previous ones. We have 
not further explored these possibilities. 
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2.4 Workload balancing 

2.4.1 Subproblem (A) 

The model 

25 

We proceed in this phase to a preliminary distribution of the workload over 
the machine line, based on the number of equipment changes for each head 
and on a rough estimate of the time needed to mount each component. The 
latter estimate is computed as follows. 

In Section 2.1, we have seen that the time needed to mount a component 
of type t (t = 1, ... , T) consists of two terms: a variable term measuring 
the travet time of the h.ead, and a constant term Pt representing the total 
time spent to pick the component when the head is directly above feeder t, 
plus the time to place the component when the head is above the desired 
location. 

Let now Vt be an estimate of the first variable termj then, Vt + Pt is an 
estimate of the mounting time required by each component of type t. Notice 
that, in practice, a reasonable value for Vt does not appear too difficult 
to come by, e.g. by evaluating the average time required for the arm to 
travel from feeder slots to mounting locations. The solution of the model 
given below does not appear to be very sensitive to the exact value of Vt. 

(In our computer experimentations, we used a constant value v for all Vt, 

t = 1, ... , T.) Otherwise, solving the model for a few alternative values of Vt 

(t = 1, ... , T) provides different initial solutions for the subsequent phases of 
the procedure. If necessary, after all subproblems (A)-(F) have been solved, 
a solution to the global problem can be used to adjust the values Vt and 
reiterate the whole solution procedure. 

Define now two component types to be equivalent if the quantity Vt + Pt 

is the same for both types, and if both types can be handled by precisely the 
same equipment. This relation induces a partition of the set of components 
into C classes, with each class containing components of equivalent types. 

We are now almost ready to describe our model. We first introduce a 
few more parameters: 

Q = number of available equipmentsj 
for C = 1, ... , C, 

Be = number of components in class Cj 
We = common value of Vt + Pt for the types represented in class Cj 
Q( c) = set of equipments which can handle the components in class Cj 



for h = 1, ... , 3M, 
Eh = time required by an equipment change for head h. 

The decision variables are: for c = 1, ... , C, for m = 1, ... , M, for h 
1, ... ,3M, for q = 1, .. . ,Q: 

Xem = number of components of class c to be mounted by machine mj 
Zmq = 1 if machine m uses equipment qj 

= 0 otherwisej 
Th = number of equipment changes required for head hj 
W = estimated workload of the bottleneck machine. 

The optimization model for subproblem (A) is: 

(MA) minimize W 
M 

subject to 2: Xem = Be 

m=l 

Xem ~ Be 2: Zmq 

qEQ(e} 

Q 3m 

2: Zmq ~ 2: Th + 3 
q=l h=3m-2 

C 3m 

c=l, ... ,C, (2.1) 

c= 1, ... ,Cj 

m = 1, ... , M, (2.2) 

m = 1, .. . ,M, (2.3) 

W ~ 2: WeXcm + 2: EhTh m = 1, ... , M, (2.4) 
e=l h=3m-2 

Xem ~ 0 integer 

Zmq E {O,l} 

Th ~ 0 integer 

c= 1, ... ,Cj 

m = 1, .. . ,M, (2.5) 

m=l, ... ,Mj 

q=l, ... ,Q, 
h = 1, ... ,3M. 

(2.6) 

(2.7) 

Constraints (2.1) express that all components must be mounted. Constraints 
(2.2) ensure that machine m is assigned at least one of the equipments in 
Q(c) when Xem is nonzero. Constraints (2.3) together with (2.4), (2.7) and 
the minimization objective, impose that the number of equipment changes 
on each machine be equal to the number of equipments used minus three, 
or to zero if the latter quantity becomes negative. The right-handside of 
(2.4) evaluates the processing time on machine m (we assume here that 
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the time needed to bring a new PCB on the worktable, after completion of 
the previous one, is always larger than the time required for an equipment 
change). Thus, at the optimum of (MA), W is equal to the maximum of 
these processing times. 

Two comments are in order concerning this model. First, we could have 
formulated a similar model using variables Xkm instead of Xcm , with the 
in<;lex k running over all component locations, from 1 to N. The advantage 
of aggregating the components into classes is that the number of variables is 
greatly reduced, and that some flexibility remains for the exact assignment 
of operations to heads. This flexibility will be exploited in the solution of 
further subproblems. Second, observe that we do not impose any constraint 
on the number of feeder slots required by a solution of (MA). This could, 
in principle, be done easily, e.g. as in the partitioning model of Ahmadi et 
al. (1988), but requires the introduction of a large number of new variables, 
resulting again from the disaggregation of classes into types. From a practical 
point of view, since we always allocate at most one feeder of each type per 
machine (remember the secondary criterion expressed in Section 2.3), the 
number of feeder slots never appears to be a restrictive factor; hence the 
solutions of (MA) are implement able. 

In practice, the number of equipments needed to mount all components is 
often smaller than the number of heads available. When this is the case, we 
can in general safely assume that no change of equipments will be performed 
in the optimal solution of (MA) (since Eh is very large). We may then 
replace (MA) by a more restrictive model, obtained by fixing rh = 0 for 
h= 1, ... ,3M. 

Complexity and solution of model (MA) 

Every instance of the well-known set-covering problem can be polynomially 
transformed to an instance of (MA) with M = 1, which implies that model 
(MA) is already NP-hard when only one machine is available (we assume the 
familiarity of the reader with the basic concepts of complexity theory; see, for 
example, Garey and Johnson (1979) or Nemhauser and Wolsey (1988); the 
proofs of all the complexity results can be found in Crama, Kolen, Oerlemans 
and Spieksma (1989». 

In spite of this negative result, obtaining solutions of good quality for 
(MA) turns out to be easy in practical applications. To understand this 
better, notice that the number of variables in these applications is usually 
small. The real-world machine line which motivated our study features three 
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machines. A typical PCB may require the insertion of a few hundred com
ponents, but these fall into five to ten classes. The number of equipments 
needed to mount the board (after deletion of a few clearly redundant ones) 
seems rarely to exceed five.· So, we have to deal in (MA) with about 10 to 
30 zero-one variables and 15 to 50 integer variables. 

In view of these favorable conditions, we take a two-phase approach to 
the solution of (MA). In a first phase, we consider the relaxation of (MA) 
obtained by omitting the integrality requirement on the x-variables (in con
straints (2.5)). The resulting mixed-integer program is easily solved by any 
commercial branch-and-bound code (one may also envision the development 
of a special code for this relaxed model, but this never appeared necessary 
in this context). 

In the second phase, we fix all r- and z-variables of (MA) to the values 
obtained in the optimal solution of the first phase. 
In this way we obtain a model of the form: 

(MA) minimize W 
M 

subject to L Xem = Be 
m=l 

G 

c = 1, ... ,C, 

W ~ LWexem + Wm m = 1, ... ,M, 
e=l 

Xcm ~ 0 integer c = 1, .. . ,C; 

m=1, ... ,M, 

where some variables Xcm are possibly fixed to zero (by constraints (2.2) of 
(MA)), and Wm is the total time required for equipment changes on machine 
m (m = 1, . .. ,M). 

In practice, model (MA) is again relatively easy to solve (even though 
one can show by an easy argument that (MA) is NP-hard). If we cannot 
solve it optimally, then we simply-round up or down the values assumed by 
the x-variables in the optimal solution of the first phase, while preserving 
equality in the constraints (2.1). 

In our implementation of this solution approach, we a<;tually added a 
third phase to the procedure. The goal of this third phase is twofold: 1) to 
improve the heuristic solutions found in the first two phases; 2) to generate 
alternative "good" solutions of (MA), which can be used as initial solutions 
for the subsequent subproblems of our hierarchical approach. 

Two type of ideas are applied in the third phase. On the one hand, we 



Section 2.4 29 

modify "locally" the solutions delivered by phase 1 or 2, e.g. by exchang
ing the equipments of two machines, or by decreasing the workload of one 
machine at the expense of some other machine. On the other hand, we 
slightly modify model (MA) by imposing an upperbound on the number of 
components assigned to each machine, and we solve this new model. 

Running the third phase results in the generation of a few alternative so
lutions associated with reasonable low estimates of the bottleneck workload. 

2.4.2 Subproblem (B) 

The model 

At the beginning of this phase, we know how many components of each class 
are to be mounted on each machine, i.e. the values of the variables Xcm in 
model (MA)' Our goal is now to dis aggregate these figures and to determine 
how many components of each type must be handled by each machine. The 
criterion to make this decision will be the minimization of the number of 
feeders required (this is the secondary criterion discussed in Section 2.3). 

So, consider now an arbitrary (but fixed) class c. Reorder the types of 
the components so that the types of the components contained in class care 
indexed by t = 1, ... , R. Recall that Nt is the total number of components of 
type t to be placed on the board for all t. To simplify our notations, we also 
let Xm = Xcm denote the number of components of class c to be mounted 
by machine m. So, E:;l Nt = E~=l Xm = Be. We define the following 
decision variables: for t = 1, ... , R, for m = 1, ... , M j 

Utm = number of components of type t to be mounted by machine mj 

Vtm = 1 if a feeder of type t is required on machine mj 

= 0 otherwise. 

Our model for subproblem (B) is: 

R M 
(MB) minimize E E Vtm 

t=l m=l 
R 

subject to E Utm = Xm 
t=l 
M 

E Utm = Nt 
m=l 

m= 1, ... ,M, 

t = 1, ... ,R, 



Utm :::; min(Xm, Nt)Vtm t = 1, ... , Rj 

m=l, ... ,M, 

Utm ~ 0 integer t = 1, ... , Rj 

m=l, ... ,M, 

Vtm E {0,1} t = 1, ... ,Rj 

m=l, ... ,M. 

Model (MB) is a so-called pure fixed-charge transportation problem (see 
Fisk and McKeown (1979), Nemhauser and Wolsey (1988)). 

Another way of thinking about model (MB) is in terms of machine 
scheduling. Consider R jobs and M machines, where each job can be pro
cessed on any machine. Job t needs a processing time Nt (t = 1, ... , R) and 
machine m is only available in the interval [0, Xm] (m = 1, ... , M). Recall 
that E{;l Nt = E~=l X m · So, if preemption is allowed, there exists a fea
sible schedule requiring exactly the available time of each machine. Model 
(MB) asks for such a schedule minimizing the number of preempted jobs (in 
this interpretation, Vtm = 1 if and only if job t is processed on machine m). 

Complexity and solution of model (MB) 

The well-known partition problem can be polynomially transformed to model 
(MB), which implies that (MB) is NP-hard. 

Model (MB) can be tackled by a specialized cutting-plane algorithm for 
fixed-charge transportation problems (Nemhauser and Wolsey (1988)), but 
we choose to use instead a simple heuristic. This heuristic consists in re
peatedly applying the following rule, until all component types are assigned: 

Rule: 
Assign the type (say t) with largest number Nt of components to the ma
chine (say m) with largest availability Xmj if Nt :::; X m , delete type t from 
the list, and reduce Xm to Xm - Ntj otherwise, reduce Nt to Nt - X m , and 
Xm to o. 

Clearly, this heuristic always delivers a feasible solution of (MB), with 
value exceeding the optimum of (MB) by at most M - 1 (since, of all the 
component types assigned to a machine, at most one is also assigned to 
another machine). In other words, for a class c containing R component 
types, the heuristic finds an assignment of types to machines requiring at 
most R + M - 1 feeders. This performance is likely to be quite satisfactory, 
since R is usually large with respect to M. 



Section 2.5 31 

In situations where duplication of feeders is strictly ruled out, i.e. where 
all components of one type must be mounted by the same machine, we re
place the heuristic rule given above by: 

Modified rule: 
Assign the type (say t) with largest number Nt of components to the ma
chine with largest availability Xm; delete type t from the list; reduce Xm to 
max(O, Xm - Nt). . 

Of course, this modified rule does not, in general, produce a feasible 
solution of (MB)' In particular, some machine m may have to mount more 
components of class c than the amount Xm determined by subproblem (A), 
and the estimated workload W of the bottleneck machine may increase. In 
such a case, we continue with the solution supplied by the modified rule. A 
possible increase in estimated workload is the price to be paid for imposing 
more stringent requirements on the solution. 

Before proceeding to the next phase, i.e. the scheduling of individual 
machines, we still have to settle one last point concerning the distribution of 
the workload over the machines. Namely, the solution of model (MB) tells 
us how many components of each type must be processed by each machine 
(namely, Utm), but not which ones. Since the latter decision does not seem 
to affect very much the quality of our final solution, we neglect to give here 
many details about its implementation. Let us simply mention that we rely 
on a model aiming at an even dispersion of the components over the PCB for 
each machine. The dispersion is measured as follows: we subdivide the PCB 
into cells, and we sum up the discrepancies between the expected number of 
components in each cell and their actual number. It is then easy to set up an 
integer linear programming problem, where the assignment of components 
to machines is modelled by 0-1. variables, and the objective corresponds to 
dispersion minimization. The optimal solution of this problem determines 
completely the final workload distribution. 

2.5 Scheduling of individual machines 

In this section we concentrate on one individual machine (for simplicity, 
we henceforth omit the machine index). Given by subproblem (B) are the 
locations (say 1, ... , N) of the components to be mounted by this machine 
and their types (1, ... , T). Given by subproblem (A) are the equipments 
(1, ... , Q) to be used by the machine, and the number Th of equipment 
changes per head. 



2.5.1 Subproblem (C) 

The model 

Our current goal is to determine the distribution of the workload over the 
three heads of the machine (a similar "partitioning" problem is treated by 
Ahmadi et al. (1988), under quite different technological conditions). This 
will be done so as to minimize the number of trips made by the heads 
between the feeder slots and the PCB. In other words, we want to minimize 
the maximum number of components mounted by a head. In general, this 
criterion will only determine how many components each head must pick 
and place, but not which ones. The latter indeterminacy will be lifted by 
the introduction of a secondary criterion, to be explained at the end of this 
subsection. 

Here, we are going to use a model very similar to (MA)' Since we are 
only interested in the number of components mounted by each head, let us 
redefine two components as equivalent if they can be handled by the same 
equipments (compare with the definition used in Subsection 2.4.1). This 
relation determines C classes of equivalent components. As for subproblem 
(MA), we let, for c = 1, ... , C: 

Be = number of components in class Cj 
Q( c) = set of equipments which can handle the components in class c. 

We use the following decision variables: for c = 1, ... , C, for h = 1,2,3, for 
q= 1, ... ,Q: 

Xeh = number of components of class c to be mounted by head hj 
Zhq = 1 if head h uses equipment qj 

= 0 otherwisej 
V = number of components mounted by the bottleneck head. 

The model for subproblem (C) is: 

(Me) minimize V 
3 

subject to L Xeh = Be 

h=l 

c= 1, ... ,C, 

Xeh ~ Be L Zhq C = 1, ... , Cj h = 1,2,3, 
qEQ(e) 

Q 

L Zhq = Th + 1 h = 1,2,3, 
q=l 
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e 
V ~ L:Xch 

c=l 

Xch ~ 0 integer 

Zhq E {0,1} 

h = 1,2,3, 

c = 1, ... , C; h = 1,2,3, 

h = 1,2,3; q = 1, . .. ,Q. 
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(Recall that Th + 1 is the number of equipments allocated to head h by model 
(MA». 

Complexity and solution of model (Me) 

Again, the partition problem is easily transformed to model (Me), implying 
that the problem is NP-hard. 

Moreover, as was the case for (MA), model (Me) is actually easy to solve 
in practice, due to the small number of variables. Here, we can use the same 
type of two-phase approach outlined for (MA). 

As mentioned earlier, the solution of (Me) does not identify which com
ponents have to be mounted by each head. To answer the latter question, we 
considered different models taking into account the dispersion of the com
ponents over the board. However, it turned out empirically that a simple 
assignment procedure performed at least as well as the more sophisticated 
heuristics derived from these models. We describe now this procedure. 

Consider a coordinate axis parallel to the arm along which the three 
heads are mounted. We orient this axis so that the coordinates of heads 1, 
2 and 3 are of the form X, X + k and X + 2k respectively, where k is the 
distance between two heads (k > 0). Notice that X is variable, whereas k is 
fixed, since the arm cannot rotate. 

The idea of our procedure is to assign the component locations with 
smallest coordinates to head 1, those with largest coordinates to head 3, 
and the remaining ones to head 2. Since this must be done within the 
restrictions imposed by (Me), let us consider the values Xch obtained by 
solving (Me). Then, for each c, the components of class c to be mounted by 
head 1 are chosen to be the XcI components with smallest coordinates among 
all components of class c. Similarly, head 3 is assigned the Xc3 components 
with largest coordinates among the components of class c, and head 2 is 
assigned the remaining ones. 

As mentioned before, this heuristic provided good empirical results. The 
reason for this good performance may be sought in the fact that the inter
head distance k is of the same order of magnitude as the length of a typical 
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PCB. Thus, our simple-minded procedure tends to minimize the distance 
travelled by the heads. 

2.5.2 Subproblem (D) 

The model 

For simplicity, we :first consider the case where every head has been assigned 
exactly one piece of equipment (i.e., Tl = T2 = T3 = 0 in model (Me)). Thus, 
at this point, the components have been partitioned into three groups, with 
group h containing the Gh components to be mounted by head h (h = 1,2,3). 
Let us further assume that G1 = G2 = G3 = G (if this is not the case, then 
we add a number of "dummy" components to the smaller groups). We know 
that G is also the minimum number of pick-and-place rounds necessary to 
mount all these components. We are now going to determine the composition 
of these rounds, with a view to minimizing the total travel time of the arm 
supporting the heads. 

Suppose that the components in each group have been (arbitrarily) num
bered 1, ... , G. Consider two components i and j belonging to different 
groups, and assume that these components are to be mounted succesively, 
in a same round. We denote by dij the time necessary to reposition the arm 
between the insertions of i and j. For instance, if i is in group 1, j is in 
group 2, and i must be placed before j, then dij is the time required to bring 
head 2 above the location of j, starting with head 1 above i. 

For a pick-and-place round involving three components i, j, k, we can 
arbitrarily choose the order in which these components are mounted (see 
Section 2.2). Therefore, an underestimate for the travel time of the arm 
between the first and the third placements of this round is given by: 

(i) dijk = min{ dij + djk' dik + dkj, dji + dik} if none of i, j, k is a dummy; 

(li) dijk = dij if k is a dummy; 

(iii) dijk = 0 if at least two of i,j,k are dummies. 

Let us introduce the decision variables Uijk, for i,j, k E {1, ... , G}, with 
the interpretation: ' 

Uijk = 1 if components i,j and k, from groups 1,2 and 3, respectively, 
are mounted in the same round; 

= 0 otherwise. 
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Then, our optimization model for subproblem CD) is: 

G G G 

CMD) minimize EEEdijkUijk 
i=lj=lk=l 
G G 

subjectto EEUijk=1 k=I, ... ,G, 
i=l j=l 
G G 
EEUijk = 1 j = 1, ... ,G, 
i=l k=l 
G G 

EEUijk = 1 i= 1, ... ,G, 
j=l k=l 
UijkE{O,I} i,j,k=I, ... ,G. 
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An optimal solution of CMD) determines G clusters, of three components 
each, such that the sum of the C underestimates of the) travel times "within 
clusters" is minimized. 

In cases where some or all of the heads have been assigned more than one 
piece of equipment in model CMA), we adapt our approach as follows. Let qh 
be the first piece of equipment to be used by head hand G h be the number of 
components which can be handled by qh among those to be mounted by head 
h Ch = 1,2,3). Say for instance that G1 ~ G2 ~ G3 • We can now set up a 
model similar to C MD) for the clustering ofthese G1 + G2 + G3 components. 
Any feasible solution of this model determines exactly G1 clusters containing 
no dummy components. These clusters correspond to our first G1 , pick-and
place rounds, to be performed by equipments qI, q2 and q3. Next, q1 is 
replaced by a new equipment q4, and the process can be repeated with q4, 

q2 and q3· 

Complexity and solution of CMD) 

Model CMD), with arbitrary coefficients dijk, has been studied in the liter
ature under the name of three-dimensional assignment problem. The prob
lem is known to'be NP-hard (see Garey and Johnson (1979)). However, 
observe that, in our case, the coefficients dijk are of the very sp~cial type 
defined by (i)-(iii). Moreover, the travel times dij (i,j = 1, ... , G) are them
selves far from arbitrary; in particular, they satisfy the triangle inequality: 
dij ~ dik + dkj for i,j,k = 1, ... ,G. However, even under these added 
restrictions, model (MD) remains NP-hard (Chapter 3 of this monograph). 
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A number of heuristic and exact algorithms have been proposed to solve 
the three-dimensional assignment problem (see, for example, Frieze and 
Yadegar (1981) and the references therein). In view of the role of (MD) 
as a subproblem in the hierarchy (A)-(F), and of the special structure of its 
cost coefficients, we opt here for a specialized heuristic procedure. 

Our heuristic works in two phases. We start by solving an (ordinary) 
assignment problem, obtained by disregarding the components of the third 
group. Thus, we solve: 

G G 
(API) minimize EEdijUij 

i=1 j=1 

G 

subject to EUij = 1 i = 1, ... ,G, 
j=1 

G 

EUij = 1 j = 1, ... ,G, 
i=1 

Uij E {O, I} i,j,k= 1, ... ,G, 

where dij = ° if either i or j is dummy. An optimal solution u* of (API) 
can be computed in time O(G3 ) (Papadimitriou and Steiglitz (1982)). 

Let now A = Hi,j): uij = I}. Thus, A is the set of pairs (i,j) matched 
by the solution of (API). The second phase of our heuristic consists in 
assigning the (previously disregarded) components of the third group to the 
pairs in A. Formally, we solve: 

G 

(AP2) minimize E E dijkUijk 

(i,j)eAk=1 

G 

subject to E Uijk = 1 (i,j) E A, 
k=1 

E Uijk = 1 
(i,j)eA 

Uijk E {O, I} 

k= 1, ... ,G, 

(i,j) E Aj k = 1., .. . ,G. 

The optimal solution of (AP2) can be obtained in time O( G3 ) and provides a 
heuristic solution of (MD)' Frieze and Yadegar (1981) proposed a closely re
lated heuristic for general3-dimensional assignment problems, and observed 
its good empirical performance. 
Let f33 denote the optimal value of (AP2). The notation f33 is a reminder 
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that, in the first phase of our heuristic, we arbitrarily decided to disregard 
the components from the third group. Of course, similar procedures could be 
defined, and corresponding bounds f31 and f32 would be derived, by initially 
disregarding the components from either group 1 or group 2. 
In our computer implementations, we compute the three bounds, f3I, f32, f33, 
and we retain the clustering of the components corresponding to the smallest 
bound. In Chapter 3 of this monograph it is proven that this bound is never 
worse than ~ times the optimal value for any instance of (MD)' The 'com
puter experiments reported in there indicate that the practical performance 
of this heuristic is excellent. 

2.5.3 Subproblem (E) 

The solution of subproblem (D) has supplied a list C1 , ••• , Ca of clusters, 
with each cluster containing (at most) three components to be placed in 
the same round (if some heads must use more than one piece of equipment, 
then we successively consider several such lists, where each list consists of 
clusters which can be processed without equipment changes). Subproblem 
(E) asks for the sequence of pick-and-place operations to be performed by 
the machine, given this list of clusters. 

This problem has been studied by Ball and Magazine (1988) and Leipala. 
and Nevalainen (1989), for machines featuring only one insertion head. In 
both papers, the authors observed that the decisions to be made in subprob
lem (E) are highly dependent on the assignment of feeders to feeder slots 
(i.e. on the solution of our subproblem (F)), and conversely. On the other 
hand, a model simultaneously taking into account both subproblems is far 
too complicated to be of any practical value. 

We therefore choose an approach already suggested by Leipala. and Neva
lainen (1989). Namely, we first solve subproblem (E)j using this solution as 
input, we compute a solution of subproblem (F), which in turn is used to 
revise the solution of subproblem (E), and so on. This process is iterated 
until some stopping condition is verified. 

The models 

According to the previous discussion, we need two models for subproblem 
(E): the first one to be used when no feeder assignment is yet known, and 
the second one taking into account a given feeder assignment. In either case, 
we reduce (E) to the solution of a shortest Hamiltonian path problem (see 
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Lawler, Lenstra, Rinnooy Kan and Shmoys (1985)) over the set of clusters 
{Ct, ... , CG}: for i,j = 1, ... , G, we define a cost (travel time) c(i,j) for pro
cessing Ci immediately before Cj; the problem is then to find a permutation 
0' = (O't, ... , O'G) of {1, ... , G} which minimizes 

G-1 

c(O') = L C(O'i,O'i+d (2.8) 
i=1 

The definition of c(i,j) depends on the given feeder assignment (if any), as 
explained hereunder. 

Consider first the situation where feeders are already assigned to feeder 
slots, and let Ci, Cj be two arbitrary clusters. In this case, the appropriate 
definition of c(i,j)is given by CQM (1988) as follows. Denote by h, l2' l3 the 
component locations in Ci, where lh is to be processed by head h (h = 1,2,3). 
We assume that the feeder needed for lh is in slot 8h (h = 1,2,3). Similarly, 
l4 is the location to be processed by head 1 in cluster Cj, and slot 84 contains 
the corresponding feeder (for simplicity, we assume that Ci and Cj consist of 
exactly three locations; obvious modifications of our description are required 
when this is not the case). 

Suppose now for a moment that h, l2 and l3 are to be mounted in the 
order 1f' = (1f'}, 1f'2, 1f'3), where (1f'1' 1f'2, 1f'3) is a permutation of {1, 2, 3}. For 
this fixed order, we can easily compute the time (say, Cij( 1f')) required to carry 
out the following operations: starting with head 1 above slot 81, sequentially 
pick one component from each of 8}, 82, 83 using heads 1,2,3 respectively; 
mount l1l"1' l1l"2' l1l"3' in that order; bring head 1 above slot 84. 

Obviously, in an optimal pick-and-place sequence, we would select the 
permutation 1f'* of {1, 2, 3} which minimizes Cij( 1f'). We accordingly define: 
c( i, j) = Cij( 1f'*). 

Now, if 0' is any permutation of {1, ... , G}, then c(O') (given by (2.8)) 
is the time required by a complete pick-and-place sequence processing the 
clusters in the order (0'1, ... , O'G). The shortest Hamiltonian path problem 
with costs Cij thus provides a natural model for subproblem (E). As a last 
remark on this model, notice that the computation of Cij( 1f') can be simplified 
by omitting from its definition those elements which are independent of 1f' 

or 0'. Namely, we can use a "modified Cij{ 1f')" defined as the time needed, 
starting with head 3 above 83, to bring successively head 1f'1 above l1l"1' head 
1f'2 above l1l"2' head 1f'3 above l1l"3 and finally head 1 above 84. ' 

Let us return now to the initial solution of (E), when the feeder positions 
are still unknown. Since this initial sequence will be modified by the subse
quent iterations of our procedure, it does not seem necessary at this stage 
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to look for a solution of very high quality (actually, one may even argue 
that an initial sequencing of lower quality is desirable since it provides more 
flexibility in the next phases of the procedurej see, for example, Leipala. and 
Nevalainen (1989) for more comments along this line). Accordingly, we de
fine the coefficients c( i, j) for our initial traveling salesman problem as rough 
estimates of the actual travel times. We experimented with some possible 
definitions, which seem to lead to comparable results (in terms of the final 
solution obtained). One such definition is as follows. Let 9i and 9j be the 
centers of gravity of the clusters Ci and Cj, respectively. Let s be the feeder 
slot minimizing the total distance from 9i to s to 9j. Then, c(i,j) is the time 
needed for the arm to travel this total distance. 

Complexity and solution of the models 

The shortest Hamiltonian path problem is closely related to the traveling 
salesman problem, and is well-known to be NP-hard, even when the costs 
c( i,j) satisfy the triangle inequality (Lawler et al. (1985)). Many heuristics 
have been devised for this problem, and we have chosen to experiment with 
two ofthe simplest: nearest neighbor (with all possible starting points) and 
farthest insertion, which respectively run in O(G3 ) and O(G2 ) steps (we 
refer to Lawler et al. (1985) for details on these procedures). Both heuristics 
produced results of comparable quality. 

2.5.4 Subproblem (F) 

The model 

As input to this subproblem, we are given the types (1, ... , T) and the 
locations (1, ... , N) of the components to be mounted, where (1, ... , N) is 
the mounting sequence determined by the previous solution of subproblem 
(E). Our problem is now to allocate each feeder 1, ... , T to one of the feeder 
slots 1, ... , S, so as to minimize the total mounting time (for the sake of 
clarity, we first assume that every feeder can be loaded in exactly one slotj 
we indicate later how our model can be modified when some feeders require 
two or more slots). 

We use the decision variables Vts (t = 1, ... , Tj S = 1, ... , S) with the 
interpretation: 

Vts = 1 if feeder t is loaded in slot Sj 
. = 0 otherwise. 
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These variables must obey the following restrictions, expressing that eve
ry feeder occupies exactly one slot, and no slot contains two feeders: 

s 
L Vts = 1 t = 1, ... , T, (2.9) 
s=l 
T 

LVts~1 s=1, ... ,8, (2.10) 
t=l 

Vts E{0,1} t=1, ... ,Tj s=1, ... ,8. (2.11) 

Before describing the other elements of our model, we first introduce some 
terminological conventions. We say that a movement of the arm is a feeder
board movement if it occurs between the last picking and the first placing of 
the same round, or between the last placing of a round and the first picking 
of the next one. By contrast, a feeder-feeder movement takes place between 
two pickings of a same round. 

Consider now a fixed solution Vts (t = 1, ... , Tj S = 1, ... ,8) of (2.9)
(2.11). For the corresponding assignment offeeders to slots, the total mount
ing time of the PCB can be broken up into three terms: 

1) a term 'L,;=1 'L,~=1 atsVts, where ats is the total time spent in feeder
board movements from or to feeder t, when feeder t is loaded in slot Sj 
this term represents the total feeder-board travel timej notice that the 
value of each coefficient ats is completely determined by the techno
logical features of the machine, and by the sequence of pick-and-place 
operations to be performed by the machine (i.e., by the solution of 
subproblem (E))j 

2) a term 'L,~t=l 'L,~s=1 bprtsVprVts, where bprts is the total time spent in 
feeder-feeder movements between feeders p and t, when feeder p is in 
slot r and feeder t is in slot Sj this term gives the total feeder-feeder 
travel timej here again, the coefficients bprts are easily computedj 

3) a term accounting for all other operations (picking and placing of all 
components, and travel time between placements of the same round)j 
for a fixed pick-and-place sequence, this term is independent of Vts' 
According to this discussion, our model for subproblem (F) can be 
formulated as: 

T S T S 

(Mp) minimize LLatsVts + L L bprtsVprVts 
t=1 s=1 p,t=1 r,s=1 

subject to (2.9), (2.10), (2.11). 
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Problem (MF) is a quadratic assignment problem (see Burkard (1984)). 
As mentioned earlier, this formulation can easily be modified to accomodate 
additional restrictions. For instance, if feeder t must occupy two slots, we 
reinterpret: 

Vts = 1 if feeder t is loaded in slots sand s + 1; 
= 0 otherwise. 

Straightforward restrictions must then be added to (2.9)-(2.11) to preclude 
the assignment of any feeder to slot s + 1 when Vts = 1. This can also be 
achieved while preserving the quadratic assignment structure of (MF), by 
raising all coefficients bp,s+1,t,s to very high values. 

As a last remark on (MF), let us observe that this model boils down to 
a linear assignment problem for machines featuring only one insertion head. 
On the other hand, Leiprua and Nevalainen (1989) proposed a quadratic 
assignment formulation of the feeder assignment subproblem (F) for another 
type of one-head machines. This discrepancy is obviously due to the different 
technologies. 

Complexity and solution of (MF) 

The quadratic assignment problem is well-known to be NP-hard, and to 
be particularly difficult to solve exactly for values of T and S larger than 
twenty (Burkard (1984)). A typical instance of (MF) may involve as many as 
twenty feeder types and sixty slots, and hence must be tackled by heuristic 
methods. 

For (MF), we have used a local improvement method, based on pairwise 
exchanges of feeders (see Burkard (1984)). This procedure starts with an 
initial solution of (2.9)-(2.11), and applies either of the following steps, as 
long as they improve the objective function value in (MF): 

Step 1 : move a feeder from its current slot to some empty slot; 
Step 2 : interchange the slot assignments of two feeders. 

To determine an initial assignment of feeders to slots, we proceed in two 
phases. First, we solve the assignment problem (MF) obtained by setting all 
coefficients bprts to zero in (M F) (this amounts to disregarding the feeder
feeder movements of the arm). Let v* be an optimal solution of (MF). 

Next, we consider those feeders (say 1, ... , P) whose components are only 
picked by head 2. Observe that the associated variables Vts (t = 1, ... , P; 
s = 1, ... ,8) do not appear in the objective function of (MF), since there 
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are no feeder-board movements to or from these feeders (Le., ats = 0 for 
t = 1, ... , Pj S = 1, ... , S). Consequently, the value ofthese variables in v* is 
conditioned only by the constraints (2.9)-(2.11), and may as well be random. 
In order to determine more meaningful values for these variables, we solve 
the restriction of (MF) obtained by setting Vts = vis for t = P + 1, ... , T and 
S = 1, ... , S. It'is easy to see that this again is a linear assignment problem, 
aiming at the minimization of the total feeder-feeder travel time under the 
partial assignment vis (t = P + 1, ... , Tj S = 1, ... , S). The optinial solution 
ofthis problem together with the values vis (t = P + 1, ... ) Tj S = 1, ... , S), 
provides the initial solution for the improvement procedure described above. 

2.6 An example 

In this section, we discuss the performance of our heuristics on a problem 
instance described in CQM (1988). The placement line under consideration 
consists of three machines. The third head is broken and unavailable on 
machine 3. The 258 components to be mounted on the PCB are grouped 
in 39 types (actually, the PCB is partitioned into three identical blocks, of 
86 components eachj we shall make use of this peculiarity in the solution of 
subproblem (A)). Three distinct pieces of equipments suffice to handle all 
the component typesj moreover, each type can be handled by exactly one of 
these three pieces of equipments. 

For the sake of comparison, let us mention that CQM (1988) evaluates 
to 74, 65 and 81 seconds, respectively, the mounting times required by the 
three machines for the actual operations sequence implemented by the plant 
(notice that this sequence is not known in full detail, and that these "plant 
times" appear to be underestimates). The hierarchical decomposition and 
the heuristics developed in CQM (1988) produce a solution with mounting 
times 68.41,66.52 and 68.88 seconds for the three machines. A still better 
solution is obtained in CQM (1988) after imposing that the equipments used 
remain fixed as in the plant situation. Under these conditions, production 
times of 66.12,65.25 and 65.47 are achieved on the three machines, i.e. an 
improvement of at least 18 percent of the bottleneck time with respect to the 
plant solution. To fully appreciate these figures, one should ,also know that 
a constant time of 106 seconds is needed for the pick-and-place operations 
alone, independently of the production sequence (see Section 2.2). These 
unavoidable 106 seconds represent more than half of the total mounting 
time required by the CQM solutions. 
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Subproblem (A) 

We now take up our subproblem (A). With a constant estimate of v = 0.3 
(secs) for the travel time of the heads between two insertions, the components 
fall into five classes, characterized by the parameters in Table 2.1. 

Class 1 2 3 4 5 
Be 201 27 24 3 3 
We 0.6 1.35 0.75 1.65 1.15 

Q(c) {1} {2} {3} {3} {3} 

Table 2.1 Parameters for subproblem (A) 

We set up model (MA) with these parameters and Eh = 2 (h = 1, ... ,8) 
(and the obvious modifications implied by the unavailability of head 9). This 
model is easily solved by the approach descr~bed in Subsection 2.4.1. Notice 
that the relaxation of (MA) obtained by omitting the integrality requirement 
for the x-variables has several alternative optima. As expected, Th = 0 
(h = 1, ... ,8) in all these optimal solutions, i.e. equipment changes are 
ruled out. 

As explained in Subsection 2.4.1, the solutions found for subproblem (A) 
can be c~nsidered as alternative inputs for the subsequent subproblems in 
the decomposition. In the present case, most of these solutions led us to 
production plans with processing times of 66 to 68 seconds. To illustrate the 
next steps of our approach, we shall concentrate now on a specific solution 
of (MA), derived as follows. 

We mentioned before that our PCB consists of three identical blocks. 
So, rather than solving (MA) for the complete board, we can solve first the 
model corresponding to one of the blocks, and eventually multiply all figures 
by 3. A workload distribution obtained in that way is displayed in Table 
2.2. 

Machine 1 2 3 
Equipments 1 1,3 1,2 

Xcm = number of components Xu = 102 X12 = 57 X13 = 42 
of class con X32 = 24 X23' = 27 
machine m X42 = 3 

XS2 = 3 

Table 2.2 Workload distribution 
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Subproblem (B) 

Since all components of class 2 are to be handled by machine 3, and all 
components of classes 3, 4, 5 by machine 2, we see that the distribution 
shown in Table 2.3 need only be further refined for class 1. Specifically, 28 
components types are represented in class 1. The number of components of 
each type (1, ... ,28) is given in Table 2.3. 

Type 1 2 3 4 5 .6 7 8 9 10 11 12 13 14 
Nt 24 18 18 15 12 9 9 9 9 6 6 6 6 6 

Type 15 16 17 18 19 20 21 22 23 24 25 26 27 28 
Nt 6 6 3 3 3 3 3 3 3 3 3 3 3 3 

Table 2.3 Number of components of each type for subproblem (B) 

The heuristic rule described in Subsection 2.4.2 produces the assignment 
shown in Table 2.4. Observe that each type is assigned to exactly one ma
chine, and hence exactly one feeder of each type will be needed in the final 
solution (in particular, the heuristic delivers here an optimal solution of 
(MB)). 

Machine Types 
1 1,2,3,5,10,11,14,17,20,23,26 
2 4,6,8,12,15,18,21,24,27 
3 7,9,13,16,19,22,25,28 

Table 2.4 Assignment of component types to machines 

Subproblem (C) 

Since model (Me) attempts to minimize the maximum workload of the heads 
(per machine), in this case we obviously find an assignment of the type given 
in Table 2.5. 

Head 1 2 3 4 5 6 7 8 
Equipment 1 1 1 1 1 3 1 2 
Number of 34 34 34 29 28 30 42 27 

components 

Table 2.5 Assignment for subproblem (C) 
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The components to be mounted by heads 1,2,3,4,5 are further identified 
as explained at the end of Subsection 2.5.2. In the present case, this amounts 
to assigning to head 1. all components of block 1, to head 2 all components 
of block 2, and to head 3 all components of block 3, among those previously 
assigned to machine 1. 

Subproblem (D) 

We now solve the three-dimensional assignment model (MD) for each of the 
three machines. Since machine 3 only has two heads, (MD) actually reduces 
to the assignment problem (AP1) for this machine, and hence can be solved 
exactly (optimal value: 3.26 sees). 

For machines 1 and 2, we solve (MD) using the heuristics described 
in Subsection 2.5.2. For machine 1, these heuristics supply a very good 
clustering of the components (value: 4.95 sees), where each cluster simply 
contains corresponding components from each block of the PCB. For machine 
2 we obtain a clustering with value 8.95 sees. 

Subproblems (E) and (F) 

These two subproblems are solved alternately and iteratively for each ma
chine. 

On machine 2, for instance, the first Hamiltonian path (corresponding to 
travel times between centers of gravity of the clusters) has value 13.16 sees. 
An initial feeder assignment is obtained as in Subsection 2.5.4. The pick
and-place sequence determined by this assignment and the first Hamiltonian 
path corresponds to a total feeder-board time of 14.10 sees and a total feeder
feeder time of 11.63 sees, for a total travel time of 25.73 sees. 

The local improvement procedure is next applied to this initial solu
tion. In each iteration of this procedure, we sequentially consider all feeders, 
and we attempt to perform one of the exchange steps 1 and 2 on each of 
them. After four iterations of the procedure, no more improving steps are 
found. The corresponding feeder-board and feeder-feeder times are respec
tively 14.68 sees and 8.62 sees, and hence the previous total travel time is 
improved to 23.30 sees. 

Taking this feeder assignment into account, a revised Hamiltonian path 
with value 14.07 sees is computed. The feeder assignment is in turn modified, 
resulting in (after three iterations of the local improvement procedure) a 
total travel time of 22.94 sees. No better Hamiltonian path or assignment 
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are found in the next solutions of subproblems (E) and (F). Therefore, we 
adopt this solution for machine 2. 

Similar computations are carried out for the other machines. The pick
and-place sequences obtained in this way correspond to processing times of 
63.83,66.27 and 65.82 sees on machines 1,2 and 3 respectively. These times 
are comparable to the best ones obtained by CQM. 
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Chapter 3 

Approximation algorithms 
for three-dimensional 
assignment 'problems with 
triangle inequalities 



3.1 Introduction 

Consider the following classical formulation of the (axial) three-dimensional 
assignment problem (3DA) (see e.g. Balas and Saltzman (1989)). Given is a 
complete tripartite graph Kn,n,n = (IU J U K, (I X J) U (I X K) U (J X K)), 
where I, J, K are disjoint sets of size n, and a cost Cijk for each triangle 
(i,j,k) E I X J X K. The problem 3DA is to find a subset A of n triangles, 
A ~ I X J X K, such that every element of I U J U K occurs in exactly one 
triangle of A, and the total cost c(A) = I:(i,j,k)EA Cijk is minimized. Some 
recent references to this problem are Balas and Saltzman (1989), Frieze 
(1974), Frieze and Yadegar (1981), Hansen and Kaufman (1973). 

When one formulates 3DA in graph-theoretic terms, as we just did it, it 
is natural to assume that the costs Cijk are not completely arbitrary, but are 
rather defined in terms of costs attached to the edges of the graph. More 
precisely, we shall restrict our attention in this chapter to the special cases 
of 3DA where each edge (u, v) E (I X J) U (I X K) U (J X K) is assigned a 
nonnegative length duv , and where the cost of a triangle (i,j, k) E I X Jx K 
is defined either by its total length tijk: 

tijk = dij + dik + djk' (3.1) 

or by Sijk, the sum of the lengths of its two shortest edges: 

Sijk = min{dij + dik' dij + djk' dik + djk} (3.2) 

(notice that the lengths duv are symmetric: duv = dvu for all (u,v)). 

We refer to the problem 3DA with cost coefficients Cijk = tijk, or Cijk = 
Sijk. as problem T or S, respectively. 

Instances of problem T arise in the scheduling of teaching practices at 
colleges of education (Frieze and Yadegar (1981)). 

Either T or S can also be used to model a situation encountered in 
the production of printed circuit boards by numerically controlled machines 
featuring three placement heads (see Chapter 2 of this monograph). 

In the latter application (which motivated the present study), the lengths 
duv represent travel times of the arm of the machine between locations u and 
v, where electronic components are to be inserted. In particular, and even 
though the exact definition of these travel times may be quite intricate, the 
lengths duv define a distance, i.e. they satisfy the triangle inequalities: 

duv ~ duw + dvw for all u, v, wEI U J U K. (3.3) 
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In the remainder of this chapter, we concentrate on problems T A and 
S A, i.e., on the special cases of T and S for which the triangle inequalities 
(3.3) hold. We show in Section 3.2 that TA and SA are NP-hard. In Section 
3.3, we describe some heuristics for T A and SA, and establish tight bounds 
on their worst-case performance. The results of computational experiments 
with these heuristics are presented in Section 3.4. 

Notice that in Bandelt, Crama and Spieksma (1994) heuristics are pro
posed and investigated for generalizations of T A and SA to multidimen
sional assignment problems with so-called decomposable costs. Finally, in 
Spieksma and Woeginger (1996), it is proven that a geometric version of TA 
remains NP-hard. 

3.2 Complexity of T ~ and S ~ 

The problem 3DA is well-known to be NP-hard, even when the costs Cijk 

can only take two distinct values (see e.g. Garey and Johnson (1979) for a 
proof). We show now that its special cases TA and SA remain NP-hard 
too. 

Theorem 3.1 Problem TA is NP-hard. 

Proof: 
We use the argument presented by Garey and Johnson (1979) to establish the 
NP-hardness of the problem Partition into Triangles. Consider an instance 
I of 3DA, defined by three sets 10 , Jo, Ko of size n, and Cijk E {O, 1} for all 
(i,j,k) E 10 x Jo x Ko. 

With I, we associate an instance of TA, as follows. Let M = {(i,j, k): 
Cijk = O}, IMI = m, and 

1 

J 
K 

= 
= 
= 

10 U {i/(e): e E M, 1= 1,2,3}, 

Jo U {j/(e): e E M, 1= 1,2,3}, 

Ko U {k/(e): e E M, 1= 1,2,3}, 

where i/( e), j/( e), h/( e) (e E M, 1'= 1,2,3) are 9m new elements. 
In order to conveniently define the lengths of the edges of the complete 

tripartite graph G on 1 U J U K, we first introduce m subgraphs of G. For 
each e = (i, j, k) E M, G( e) is the graph represented in Figure 3.1. 
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i 1( e) kl(e) 

~ __ .... i3(e) 

i J k 

Figure 3.1 

Now for each (u, v) E (Ix J) u(I X K) U(J X K), we let: duv = lif (u, v) 
is an edge in some graph G( e) (e EM), and duv = 2 otherwise. Clearly, 
the triangle inequalities (3.3) are satisfied by this assignment, so that I, J, K 
and the lengths duv together define an instance T of T~. 

Observe that every feasible solution of T contains exactly n + 3m tri
angles, each with cost at least 3. We claim that T has an optimal solution 
with value 3n + 9m if and only if I has a solution with value O. We leave 
details to the reader (see Garey and Johnson (1979), pp. 68-69). 0 

Theorem 3.2 Problem S~ is NP-hard. 

Proof: 
The proof is similar to the previous one: simply delete from each subgraph 
G( e) the edges (il( e), h( e)), (i, h( e)), (jl( e), k3( e)), (j, k3( e)), ( i3( e), k1( e)), 
(i3( e), k), for all e EM. The resulting instance of S ~ has an optimal solution 
with value 2n + 6m if and only if I has a solution with value O. 0 



3.3 Approximation algorithms 

In this section, we present approximation algorithms for T~ and S~. First, 
we recall a definition from Papadimitriou and Steiglitz (1982) (see also Garey 
and Johnson (1979)). Consider a minimization problem P, and an algorithm 
H which, given any instance I of P, returns a feasible solution H(I) of 
I. Denote by c(H(I)) the value of this heuristic solution, and by OPT(I) 
the value of an optimal solution of I. Then, H is called an e-approximate 
algorithm for P, where e is a nonnegative constant, if: 

c(H(I)) ~ (1 + e) OPT (I) 

for all instances I of P. 
We will show that ~-approximate polynomial-time algorithms exist fo; 

problems T ~ and S~. As indicated by our next theorem, the triangle 
inequalities (3.3) play an instrumental_role in the proof of such results: 

Theorem 3.3 Unless P = NP, there is no e-approximate polynomial algo
rithm for problems T and S, for any e ~ O. 

Proof: 
We establish the statement for problem T (the other case being similar). 
Assume that there is an e-approximate algorithm for T, say H. 
As in the proof of Theorem 3.1, consider an instance I of 3DA with Cijk E 
{O,l} for all (i,j,k), the corresponding sets I,J,K, and the subgraphs 
G(e)(e EM). 
For (u,v) E (I x J) U (I x K) U (J x K), let: duv = 1 if (u,v) is an edge of 
G( e)( e EM), and duv = (3n + 9m)e + 2 otherwise. This defines an instance 
T of problem T, with the property that T has an optimal solution with value 
3n + 9m if and only if I has a solution with value O. 

Now, it is easy to see that the e-approximate algorithm H always returns 
a solution of T with value 3n + 9m, if there is one (because the second best 
solution has value at least (1 + e)(3n + 9m) + 1). Hence, unless P = NP, 
H cannot be a polynomial-time algorithm. 0 

We describe now informally a polynomial-time heuristic HIJ for problems 
T and S. This heuristic was proposed in Chapter 2 of this thesis. The input 
to HIJ is the set of edge-lengths duv , where (u, v) E (Ix J)U(IxK)U(JxK), 
and III = IJI = IKI = n. 
The heuristic proceeds in two phases, first matching the elements of I and J, 
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and next assigning the elements of K to the pairs thus formed (Frieze and 
Yadegar (1981) propose a similar heuristic for the general 3DA problem). 
More precisely: 

Phase 1. Find an optimal solution x* of (P1): 

(P1) minimize L L dijXij 
iEI jEJ 

subject to L Xij = 1 
iEI 

LXij = 1 
jEJ 

Xij E {O,l} 

Let M = {(i,j): xij = 1}. 

JEJ 

i E I 

i E I,j E J. 

Phase 2. Find an optimal solution y* of (P2): 

(P2) minimize L L CijkYijk 

(i,j)EMkEK 

subject to L Yijk = 1 
(i,j)EM 

L Yijk = 1 
kEK 

Yijk E {O,l} 

kE K 

(i,j) EM 

(i,j)EM, kEK, 

where Cijk = tijk (respectively Cijk = Sijk) if the problem to be solved is an 
instance of T (respectively S). 

The feasible solution of T (or S) returned by the heuristic HlJ is A = 
{(i,j,k): Yijk = 1}, and its cost is denoted by CIJ. 

Notice that both (P1) and (P2) are instances of the classical (two
dimensional) assignment problem, or weighted bipartite matching problem, 
and hence can be solved in O( n3 ) operations (Papadimitriou and Steiglitz 
(1982)). It follows that Hu also runs in time O(n3 ). 

We leave it as an easy exercise to verify that, as suggested by Theorem 
3.3, HlJ is not an c-approximate algorithm for either T or S, for any c 2:: 0. 

On the other hand, when the lengths duv satisfy the triangle inequalities, 
we get: 

Theorem 3.4 HlJ is a ~-approximate algorithm for problem T/:!.. More
over, there exist arbitrary large instances T of TI:!. such that ClJ = ~OPT(T). 
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Proof: 
Let T be an instance of T~. Let M be the matching of I U J found by the 
first phase of H IJ, and A be the assignment returned by H IJ. 

Consider now an optimal solution of T, say F. With F, we associate 
another feasible solution B = {( i, j, k) : (i, j) EM, and (u, j, k) E F for 
some u E I}. 

We obtain successively: 

CIJ L tijk 
(i,j,k)EA 

~ L tijk 
(i,j,k)EB 

L (dij + dik + djk) 
(i,j,k)EB 

< 2 L (dij + djk) 
(i,j,k)EB 

2 L dij + 2 L djk 
(i,j,k)EA (i,j,k)EF 

< 2 L (dij + djk) 
(i,j,k)EF 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

((3.4) holds because A is optimal for (P2), (3.5) is by definition oftijk, (3.6) 
uses the triangle inequality, (3.7) is by definition of B, and (3.8) follows from 
optimality of M for (PI)). 

By symmetry with (3.8), we can also derive: 

CIJ ~ 2 L (dij + dik) 
(i,j,k)EF 

Now, (3.8) and (3.9) together entail: 

CIJ ~ L (2dij + dik + djk) 
(i,j,k)EF 

3 1 
= L ("2dij + "2di j + dik + djk) 

(i,j,k)EF 

and, using the triangle inequalities to bound ~dij: 

3 3 
CIJ ~"2 L tijk = "2 OPT(T). 

(i,j,k)EF 

(3.9) 

(3.10) 

(3.11) 
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To see that equality may hold in (3.11), consider first the graph G rep
resented in Figure 3.2. 

2 
Zt~---------------------'jt 

1 1 

1 1 

j2~---------------------4i2 
2 

Figure 3.2 

Also indicated in Figure 3.2 are the costs Cuv E {1,2} of the edges of G. 
Now, we define an instance T of T Ll as follows. We let 1 = {it, i2}, J = 

{j}'h}, K = {k}, k2 }. For (u, v) E (1 X J) U (1 X K) U (J X K), duv is the 
length of a shortest path from u to v in G, with respect to the costs Cuv ' 

It is easy to see that an optimal solution for this instance is F = {i},j2, kt ), 

(i 2 ,j},k2 )}, with OPT(T) = 8. 
But HIJ can pick (in Phase 1) M = {(i},jd, (i2,h)), and next (in Phase 

2) A = {( ill it, kt ), (i2' h, k2 )}, with cost CIJ = 12 = ~ OPT(T). Arbitrary 
large instances of TLl can be obtained by taking several copies of G, with 
very large distances between points in different copies. 0 

The previous result also holds mutatis mutandis for problem SLl: 

Theorem 3.5 HIJ is a !-approximate algorithm for problem SLl. More
over, there exist arbitrary large instancesS of SLl such that CIJ = ~ OPT(S). 

Proof: 
Let S be an instance of S Ll. Define M, A, F and B in the same way as for 
the proof of Theorem 3.4. We derive the following inequalities: 

CIJ = E Sijk 

(i,j,k)EA 
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< ~ Sijk (3.12) 
(i,j,k)EB 

< ~ dij + ~ djk (3.13) 
(i,j,k)EA (i,j,k)EF 

< ~ (dij+djk ) (3.14) 
(i,j,k)EF 

((3.12) holds because A is optimal for (P2), (3.13) is by definition of Band 
of Sijk, (3.14) follows from the optimality of M for (PI)). 

By symmetry with (3.14), the following inequality is also valid: 

CfJ ~ ~ (dij + dik). (3.15) 
(i,j,k)EF 

U sing the triangle inequalities, one easily checks: 

2dij + dik + djk ~ 3Sijk for all i,j, k. (3.16) 

Hence, (3.14), (3.15) and (3.16) together imply: 

3 3 
CIJ ~ 2" ~ Sijk = 2" OPT(S). 

(i,j,k)EF 

(3.17) 

The example presented in the proof of Theorem 3.4 also achieves equality 
in (3.17), and can be used to build arbitrary large instances. 0 

Of course, one can define in a natural way two more ~-approximate 
algorithms for problems Tb.. and Sb.., namely the heuristics HIK and HJK 

obtained by permuting the roles of I, J and K in the description of HIJ. 

We denote by CIK and CJK the values of the solutions delivered by HIK and 
H JK, respectively. 

Consider now the heuristic H, which consists in applying all three heuris
tics HIJ,HIK and HJK to the given instance ofTb.. or Sb.., and in retaining 
the best feasible solution thus produced. We denote by , the value of the 
solution returned by H: , = min{CIJ,CIK,CJK}. 

Clearly, H can again be implemented to run in time O( n3 ), and H is a 
~-approximate algorithm for T b.. and S b... But even more is true: 

Theorem 3.6 H is a ~-approximate algorithm for problem Tb... Moreover, 
there exist arbitrary large instances T ofTb.. such that, = 1 OPT(T). 
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Proof: 
Let T be an instance of T 06., and F an optimal solution of T. As in the proof 
of Theorem 3.4, we obtain inequalities (3.8), (3.9), as well as the symmetric 
inequality: 

CIK S 2 L: (dik + dik). 
(i,i,k)eF 

Summing up (3.8), (3.9) and (3.18) yields: 

3')' S 2cIJ + CIK S 4 L: tiik = 4 OPT(T), 
(i,i,k)eF 

which proves that H is a i-approximate algorithm. 

(3.18) 

(3.19) 

Equality in (3.19) is achieved by the instance T depicted in Figure 3.3. 

h= k3 
Figure 3.3 

Here, 1= {il,i2,i3}, J = {h,h,ja}, K = {kt,k2 ,k3}. The lengths duv are 
indicated next to the edges 'of the "pyramid", with duv = 0 if u = v. It is 
easy to see that T is an instance of T o6.. Moreover, because T is symmetric 
on I, J and K, we can assume that')' = CIJ = CIK = CJK. 

An optimal solution of T is given by F = {( i1,i2, k3 ), (i2,ja, k1), (i3dt, k2)} 

with OPT(T) = 6. But HIJ can return a solution with cost CIJ = 8, by pick
ing M = {(it,il), (i2,ja), (i3,h)} in the first phase, and A = {(it, iI, k1), (i2, 

ja, k2 ), (i3,h, k3)} in the second phase. 0 
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Notice that we actually proved a little bit more than announced by 
the statement of Theorem 3.6. Indeed, inequality (3.19) shows that the 
minimum of any two of the bounds CIJ, C[K and CJK is already bounded 
by ~ OPT(T). On the other hand, one can exhibit examples for which 
ClJ = ClK = ~OPT(T), and CJK = OPT(T). Thus, heuristic H is in gen
eral better than the strategy which consists in computing only two of the 
bounds CIJ,CIK,CJK, and retaining the best one. 

The same remarks apply to our next result: 

Theorem 3.7 H is a ~-approximate algorithm for problem SI::!... Moreover, 
there exist arbitrary large instances S of SI::!.. such that "'I = ~ OPT(S). 

Proof: 
Let S be an instance of SI::!.., and F be an optimal solution of S. Summing 
up inequalities (3.14), (3.15) and 

ClK ~ 1: (dik + djk), 
(i,j,k)EF 

we get: 

3"'1 ~ 2cIJ + ClK ~ 2 1: (dij + dik + djk). (3.20) 
(i,j,k)EF 

Using the triangle inequalities to bound the right-hand side of (3.20) yields: 

3"'1 ~ 4 1: Sijk = 4 OPT(S). (3.21) 
(i,j,k)EF 

A worst-case instance S is represented in Figure 3.4. 

i3 = k2 
Figure 3.4 

All edges of this prism have length 1, and the distances are Euclidean. 
The optimal solution {( it,h, k3), (i2, ja, k1 ), (ia, jl, k2)} has cost OPT(, 

= 3. The heuristic HIJ may return M = {(ib iI),(i2,ja),(i3,h)} in pha 
1, and A = {(i1,j}, k1 ), (i2,ja, k2 ), (i3,h, k3)} in phase 2, for a total c( 
CIJ = 4. Hence, by symmetry, "'I = 4 is possible. 
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3.4 Computational results 

Of course, the quality of a heuristic cannot only be judged by its worst-case 
performance. Very often, it is the case that this worst-case performance is 
determined by pathological instances of the problem. With this in mind, we 
conducted some numerical experiments to better assess the quality of the 
various approximation algorithms discussed in Section 3.3. 

For fixed n = III = IJI = IKI, we considered random problems of three 
different types. 
Type I The elements of I U J U K are generated at random, uniformly in 
the square [0,1] x [0,1]. For each pair of points (u, v), du'IJ is the Euclidean 
distance from u to v (we also used for du'IJ the Manhattan distance from u 
to v, with results similar to those displayed below). 

Instances of type I form a "natural" class of random instances for prob
lems T d or S d. But, due to their high degree of uniformity, one may expect 
these instances to be easy to solve for most heuristics when n grows large. 
The next two types of instances are meant to be more "irregular" , and hence 
more difficult to solve. 
Type II The elements of I are generated uniformly in [0,1] x [0,1], those 
of J in [1,1] x [0, !], those of K in [1,1] x [!,1]. The distances du'IJ are 
Euclidean. 
Type III We fix a parameter p E [0,1]. Then, for each pair (u, v), we let 
d( u, v) = 1 with probability p, and d( u, v) = 2 with probability 1 - p. The 
value of p was empirically adjusted so as to produce rather difficult problem 
instances for our heuristics. 

For each problem type, we report in Tables 3.1, 3.2 on the solution of 
three instances with n = 33 and three instances with n = 66 (more instances 
were actually tested, but the results displayed here are representative). The 
problems of type III were generated with p = lr for n = 33 and p = io for 
n = 66. Table 3.1 deals with problem T d and Table 3.2 with problem S d. 

For the sake of comparison, we also give in Table 3.1 and 3.2 a lower
bound lb on the optimal value of each instance, as well as the value of the 
ratio ii. The bound 1b was computed using a Lagrangean relaxation scheme 
and subgradient optimization, as proposed by Frieze and Yadegar· (1981). 
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Type n CIJ CIK CJK ; Ib ;/lb 

I 33 16.18 16.36 16.55 16.18 16.07 1.007 
33 14.16 14.16 14.11 14.11 13.95 1.011 
33 16.09 16.33 16.32 16.09 16.04 1.003 
66 26.92 26.87 26.68 26.68 26.54 1.005 
66 25.00 24.81 24.69 24.69 24.33 1.015 
66 28.13 27.75 27.91 27.75 27.48 1.010 

II 33 48.83 48.61 48.75 48.61 47.72 1.019 
33 51.72 51.42 51.49 51.42 50.35 1.021 
33 43.52 43.83 44.01 43.52 42.60 1.022 
66 98.09 97.80 99.15 97.80 96.33 1.015 
66 91.47 91.60 91.42 91.42 88.31 1.035 
66 99.39 98.88 99:57 98.88 96.70 1.023 

III 33 140 135 136 135 133 1.015 
33 141 137 139 137 130 1.054 
33 135 136 137 135 130 1.038 
66 295 293 296 293 283 1.035 
66 294 298 294 294 281 1.046 
66 295 296 293 293 280 1.046 

Table 3.1 Problem T A 
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Type n CIJ CIK CJK 'Y lb 'Y lIb 

I 33 8.57 8.69 8.64 8.57 8.45 1.014 
33 7.61 7.54 7.53 7.53 7.39 1.019 
33 8.43 8.55 8.58 8.43 8.37 1.007 
66 14.23 14.31 14.09 14.09 13.90 1.014 
66 13.38 13.13 13.13 13.13 12.84 1.023 
66 14.70 14.53 14.46 14.46 14.20 1.018 

II 33 26.54 26.65 27.32 26.54 25.96 1.022 
33 28.62 28.73 28.98 28.62 27.81 1.029 
33 23.78 23.79 24.21 23.78 23.11 1.029 
66 53.86 54.05 55.90 53.86 53.12 1.014 
66 49.29 49.47 50.43 49.29 47.88 1.029 
66 54.70 54.84 56.19 54.70 53.52 1.022 

III 33 75 71 71 71 69 1.029 
33 75 72 73 72 67 1.075 
33 71 72 72 71 67 1.060 
66 163 161 165 161 151 1.066 
66 163 167 164 163 152 1.072 
66 163 165 161 161 147 1.095 

Table 3.2 Problem S!!J. 

The results exhibited in these tables indicate that, from a practical view
point, the heuristics presented in Section 3.3 perform quite satisfactorily. In 
particular, heuristic H solved all randomly generated instances within 10 
% of optimality, and often came within 3 % of the optimal value (or, more 
precisely, of the lower-bound lb). 
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Chapter 4 

Scheduling jobs of equal 
length: complexity, facets 
and computational results 



4.1 Introduction 

The following problem is studied in this chapter. Given are n jobs, which 
have to be processed on a single machine within the timespan [0, Tj. In our 
formulation, we assume T to be an integer, and the timespan is discretized 
into T time periods (or periods) oflength one, viz. [0, Ij, [1,2]' ... , [T -1, Tj. 
Thus, period t refers to the time slot [t -1, tj, t = 1, ... , T. The machine can 
handle at most one job at a time. The processing time, or length, of each 
job equals p, p E IN. The processing cost of each job is an arbitrary function 
of its start-time: we denote by Cjt the cost of starting job j in period t. The 
problem is to schedule all jobs so as to minimize the sum of the processing 
costs. We refer to this problem as problem SEL (Scheduling jobs of Equal 
Length). 

Mathematically, SEL can be formulated as follows: 

n T-p+l 

min L L CjtXjt 
j=l t=l 

T-p+1 

subject to L Xjt = 1 
t=l 

n s+p-l 

for j = 1, ... , n, (4.1) 

L L Xjt::; 1 for s = 1, .. . ,T - 2p+ 2, (4.2) 
j=l t=s 

Xjt E {O, I} for j = 1, ... , n; 

t = 1, ... , T - p + 1, (4.3) 

where Xjt = 1 if job j starts in period t, and Xjt = ° otherwise. 

Constraints (4.1) ensure that each job must start in some period, and 
constraints (4.2) imply that no more than one job can be scheduled in p 
consecutive periods. Obviously, the requirement that each job must be fin
ished before T implies that the latest possible period for any job to start 
(its starting period) is periodT - p + 1. Constraints (4.3) are the integrality 
constraints. 

In Section 4.2, this problem is shown to be strongly NP-hard, even when 
all jobs have length p = 2. In Section 4.3, we show that the inequalities 
in the LP-relaxation of (4.1)-(4.3) define facets and we focus on objective 
functions for which these inequalities are in some sense sufficient. Section 
4.4 presents more facet-defining and valid inequalities for the solution set of 
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( 4.1 )-( 4.3). Finally, we report in Section 4.5 on computational experiments 
with a simple cutting-plane algorithm. 

Notice that the input of SEL consists of the numbers n, T,p and Cjt, for 
j = 1, .. . ,n,t = 1, .. . ,T - p+ 1. Thus, since we can assume that p ~ T, 
the size of the input is O(nTlog(maxj,tcjt». It follows that an algorithm 
polynomial in n, T,p is a polynomial algorithm for SEL. This observation 
will allow us to conclude that two separation algorithms presented in Section 
4.4 are polynomial-time algorithms. 

Notice further that SEL is a special case of a scheduling problem (say, 
problem S) considered by Sousa and Wolsey (1992). In problem S, the 
jobs may have general processing times. Sousa and Wolsey propose several 
classes of facets and valid inequalities for S. It is an easy observation that, 
if {1, ' ... , n} is any subset of the jobs occurring in S, and all the jobs in 
{1, ... , n} have the same length p, then any valid inequality for (4.1)-(4.3) 
is also valid for S. This suggests that-the polyhedral description presented 
in sections 4.3 and 4.4 may prove useful, not only when all jobs strictly have 
equal length, but also in situations where the number of distinct lengths is 
small, or where most of the jobs have the same length. We now proceed 
to describe an interesting application in which the latter assumptions are 
fulfilled, and which originally motivated our study. 

The electronics industry relies on numerically controlled machines for the 
automated assembly of printed circuit boards (PCBs). Prior to the start of 
operations, a number n of feeders, containing the electronic components to 
be mounted on the PCBs, are positioned alongside the machine, in some 
available slots 1,2, ... , T. A slot can accomodate at most one feeder. Each 
feeder j requires a certain number of slots, say Pj, depending on the feeder 
type; usually, pj only takes a small number of values, say Pj E {1, 2, 3}. In 
order to minimize the production makespan, it is desirable to position the 
feeders "close" to the locations where the corresponding components must 
be inserted. More precisely, for each combination of feeder j and slot t, a 
coefficient Cjt can be computed which captures the cost of assigning feeder 
j to slots t, t + 1, ... , t + Pj - 1. It should now be clear that finding 
a minimum-cost assignment of feeders to slots is equivalent to solving a 
scheduling problem with "small number of distinct processing times" (see 
e.g. Ball and Magazine (1988) for a description of this model with Pj = 1 
for all j, and Ahmadi et al. (1995), Chapter 2 of this monograph, and Van 
Laarhoven and Zijm (1993) for a more general discussion). 

Let us finally mention that SEL may be regarded asa discrete analogue of 
scheduling problems with unit-length tasks and arbitrary rational start-times 
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(see e.g. Gareyet al. (1981) where millimizing the makespan is the objective 
considered). SEL is also superficially related to an assignment problem with 
side constraints investigated by Aboudi and Nemhauser (1990, 1991). 

4.2 Complexity of SEL 

It is obvious that, when each job has length 1 (the case p = 1), SEL reduces 
to an assignment problem, and hence is solvable in polynomial time. The 
following theorem shows that SEL is already strongly NP-hard for p = 2: 

Theorem 4.1 SEL is NP-hard, even for p = 2 and Cjt E {O, 1} for all j, t. 

Proof: 
An instance of SEL, with p = 2 and processing costs equal to ° or 1, can be 
described by a bipartite graph G = (VI U V2,B). Each job is represented by 
a vertex in Vi, each period is represented by a vertex in V2 , and there is an 
edge (j, t) E E, with j E VI and t E V2 , if and only if starting job j at period 
t has processing cost Cjt = 9. The instance of SEL admits a schedule with 
zero cost if and only if there exists a set of edges A ~ E such that 

i) each vertex in VI is incident to precisely one edge in A, 

ii) each vertex in V2 is incident to at most one edge in A, and 

iii) if vertex t E V2 is incident to an edge in A, then vertex t + 1 is not 
incident to any edge in A, for all t = 1, ... , 1V21 - 1. 

We use a reduction from the NP-hard 3-dimensional matching problem 
(see Garey and Johnson(1979)). An instance I of 3-dimensional matching is 
specified by three mutually disjoint sets Kb K2 and K3 with IKil = n, for 
i = 1,2,3, and a set Q ~ KI X K2 X K 3, with IQI = m. The instance is 
feasible if there exists a set Q' ~ Q such that every element of KI U K2 U K3 
occurs in exactly one element of Q'. 
With I, we associate an instance of SEL as follows. Let 

VI = KI U K2 U K3 U {al, .. . ,am - n } U {bb ... ,bm - n }, 

V2 = {dl , ••• ,d6m}. 

In order to define the edge-set E, denote by Q r = {k~, k:, k~} the r-th triple 
in Q, where 

k~ E KI, k: E K2 and k~ E K3 (r = 1, . .. ,m). 
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Now, let E consist of the following edges: 

(k~, d6(r-l)+1), (k;, d6(r-l)+3) and (k~, d6(r-l)+5) 

for r = 1, ... , m and 

for 8 = 1, ... ,m- n, and r = 1, ... ,m. 

A typical piece of the graph is shown in Figure 4.1. 

k~ • • d6(r-l)+1 

k2 r d6(r-l)+2 

k3 r 

d6(r-l)+3 
al 

Figure 4.1 

When the instance· I of 3-dimensional matching has a feasible solution, 
it is straightforward to find a set of edges A ~ E which defines a zero-cost 
schedule. Conversely, assume that SEL has a feasible solution specified by 
an edge set A. Define Dr = {d6(r-l)+l, ... , d6r } for r = 1, ... , m. Notice 
that, for each r = 1, ... , m, at most three vertices of Dr are incident to some 
edge of A. Moreover, when there are exactly three such vertices, then these 
vertices are matched to Qr by A. Let now 
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R3 = {r : exactly three vertices of Dr are incident to some edge of A }, 

R2 = {r : at most two vertices of Dr are incident to some edge of A }. 

Since IAI = IVt I = 2m + n, we get: 

2m + n $ 31R31 + 21R21 

= 31R31 + 2( m - IR31) 

= 2m+ IR31. 

69 

From this, it directly follows that Q' = {Qr : r E R3 } contains exactly n 
triples, and thus Q' defines a feasible solution of the 3-dimensional matching 
problem. 0 

In fact, it can be proven that SEL remains NP-hard when each job can 
be processed at zero cost during three periods only (Spieksma and Crama 
(1992». -

Notice that the proof of Theorem 4.1 is easily adapted to show that a 
related problem, in which nl jobs have length 1, n2 jobs have length 2, and 
T = nl + 2 . n2 (the minimal value of T allowing a feasible solution), is 
NP-hard too. This is to be contrasted with the following statement: 

Theorem 4.2 If T = n . p + c, where c E IN denotes a given constant not 
part of the input, then BEL is polynomially solvable. 

Proof: 

Simply notice that, in this case, it is sufficient to solve ( n; c ) = O( nC ) 

assignment problems, where each assignment problem corresponds to a set of 
starting periods allowing a feasible solution to SEL. Indeed, the feasible sets 
of starting periods are in 1-1 correspondence with 0-1 sequences of length 
n + c containing exactly n l's and cO's (with the O's denoting idle periods 
between successive jobs). 0 

4.3 The LP-relaxation of SEL 

Let us first recall some fundamental definitions from polyhedral theory (for 
a thorough introduction, the reader is referred to Nemhauser and Wolsey 
(1988)). Consider a polyhedron P = {x E JRk : Ax $ b}. The equality set of 
(A, b) is the set of rows of (A, b), say (A=, b=), such that: A=x = b= for all 
x in P. The dimension of P is given by: dim(P) = k - rank(A=, b=). The 
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inequality ax ::; ao is valid for P if it is satisfied by all points in P. For a 
valid inequality ax ::; ao, the set F = {x E P : ax = ao} is called a facet of 
P if dim(F) = dim(P) - 1. Equivalently, when 0 i= F i= P, F is a facet if 
and only if the following condition holds: if all points in F satisfy 7rX = 7ro, 
for some (7r, 7ro) E JRk+ 1, then (7r, 7ro) is a linear combination of (A = , b=) and 
(a, ao) (see Nemhauser and Wolsey (1988), p. 91). 

Consider now the formulation in Section 4.1, and let P denote the convex 
hull of the feasible solutions to constraints (4.1), (4.2) and (4.3). Further
more, assume from now on that T 2: p. (n + 1). (Notice that dim(P) ::; 
n . (T - p + 1) - n = n . (T - p). If T < p. (n + 1), then it is easy to see 

n p 

that dim(P) < n· (T - P)i for instance LL)jt = 1 is implied by (4.1) and 
j=lt=l 

(4.2)). To avoid trivialities, assume also n > 2, p 2: 2. 
Sousa and Wolsey (1992) established the dimension of P. For the sake 

of completeness, we also include a proof of this result: 

Theorem 4.3 dim(P) = n· (T - p). 

Proof: 
n T-p+l 

We just noticed that dim(P) ::; n· (T - p). Suppose L L 7rjtXjt = 7ro for 
j=l t=l 

all x E Pi we want to show that this equality is implied by constraints (4.1). 
To see this, fix j and t, t ::; T - p, and consider a solution with job 

j starting at period t, while the other jobs start arbitrarily at periods in 
[1, t - p] U [t + p + 1, T - p + 1]. Note that this is always possiblei e.g. let 
t = k . p + q, with 1 ::; q ::; Pi then, a feasible schedule can be found using 
only starting periods in 

St = {j.p+q:j = O, ..• k}U{j·p+q+ l:j = k+ 1, ... ,m}, 

where m is the largest index such that m . p + q + 1 ::; T - p + 1. Indeed, 
since T 2: p . (n + 1), St contains at least n time periods. 

Consider now a second schedule, obtained by starting job j at period 
t + 1, while all other jobs remain untouched. Comparing the two schedules, 
it follows easily that 7rjt = 7rj,t+! for all j = 1, ... , n, t = 1, . .'., T - p. (This 
construction will be used in subsequent proofs.) Thus, with 7r jt = 7r j for all 

n T-p+l n T-p+l 

j=1, ... ,n,t=1, ... ,T-p+1,wegetL L 7rjt Xjt=L7rj L Xjt= 
j=l t=l j=l t=l 

7ro, which is a linear combination of the equalities (4.1). 0 
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With the dimension of P established, we now can proceed to show that some 
inequalities define facets of P. First, we prove that the inequalities in the 
LP-relaxation of (4.1)-(4.3) are facet-defining. 

Theorem 4.4 The inequalities Xjt ~ 0 define facets of P, for all j = 
1, ... , n, t = 1, ... , T - p + 1. 

Proof: 
Let F = {x E P: Xis = O} for any i, 8 with 1 ~ i ~ n, 1 ~ 8 ~ T - p + 1 and 

n T-p+l 

suppose L: L: 'KjtXjt = 'Ko for all x E F. 
j=l t=l 

To prove 'Kj = 'Kjt for all j = 1, ... ,n, j ::j: i, t = 1, ... ,T - p+ 1, we 
refer to the construction used in the proof of Theorem 4.3 (it is obvious 
that it is always possible to ensure that job i is not placed at 8, for any 
8). Moreover, we can use this construction for job i and starting period t 
for all t ~ 8 - 2 and t ~ 8 + 1, proving that 'Kil = 'Ki2 = ... = 'Ki,s-l and 
'Ki,sH = 'Ki,s+2 = ... = 'Ki,T-pH' Thus, for 8 = lor 8 = T - p+ 1, it follows 
that 'Ki = 'Kit for all t ::j: 8. 

If 8 ::j: 1 and 8 ::j: T - p + 1, consider a solution with job i at period 1 
and the other jobs at periods 1 + p, 1 + 2p, ... ,1 + (n - 1) . p, and a solution 
with job i at T - p + 1, and all other jobs at the same periods as before 
(again, note that this is always possible, since we assumed T ~ p. (n + 1)). 
Comparing these solutions, it follows that 'Kil = 'Ki,T-pH and thus 'Ki = 'Kit 

for all t ::j: 8. So: 

n T-p+l n T-p+l 

L: L: 'KjtXjt = L: 'Kj L: Xjt + PXis, 
j=l t=l j=l t=l 

n T-p+l 

which shows that the equality L: L: 'KjtXjt = 'Ko is a linear combination 
j=l t=l 

of (4.1) and of Xis = O. o 

Theorem 4.5 The inequalitie8 (4.2) define facets of P. 

Proof: 
n s+p-l 

Let F = {x E P: L: L: Xjt = I}, for any 1 ~ 8 ~ T-2p+2, and suppose 
j=l t=s 
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n T-p+l 

L L 7rjt X jt = 7ro for all x E F. 
j=l t=l 

Chapter 4 

For any j and any t, consider a schedule using only starting periods in St 
(as in Theorem 4.3) and with Xjt = 1. There is always such a schedule 
corresponding to a point in F, unless t = s - 1. Also, the schedule obtained 
by delaying the starting period of job j until t + 1 is in F, unless t = s + P -1. 
From this, one easily concludes that, for all j = 1, ... , n, 

7rjl = 7rj2 = ... = 7rj,s-l = O!j, 

7rjs = 7rj,s+l = ... = 7rj,s+p-l = f3j, 

7rj,s+p = 7rj,s+p+l = ... = 7rj,T-p+l = Ij' (4.4) 

If 2 ::; s ::; T - p, then one can also show as in Theorem 4.4 that 7rjl = 
7rj,T-p+! for all j = 1, ... , n, or, more generally: 

Ij = O!j for all j = 1, .. . ,n. (4.5) 

Furthermore, simple interchange arguments yield: 

f3j + O!i = O!j + f3i for all i,j E {1, 2, ... , n}, (4.6) 

or equivalently g = f3j - O!j for all j = 1, ... , n. 

So, (4.4), (4.5) and (4.6) together imply: 

which proves the theorem. 0 

Theorems 4.4 and 4.5 state that the inequalities in the LP-relaxation of 
(4.1)-(4.3) define facets of (4.1)-(4.3). In view of the NP-hardness of SEL, 
we obviously cannot hope that these inequalities alone suffice to describe 
P (as a matter of fact, they don't). However, it is conceivable that, by 
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restricting ourselves to a certain class of objective functions, the inequalities 
in the LP- relaxation are in some sense sufficient. In the following we will 
explore this issue. Define 

Q = {x E 1R+ : x satisfies (4.1) and (4.2)}. 

Notice that Q is the polytope defined by the inequalities in the LP-relaxation. 
Let us now address the following question: which restrictions on the objective 
function guarantee either that i) a.ll optimal vertices of Q are integral ?, or -
less demanding -, that ii) there exists an optimal vertex of Q that is integral 
? 

If, for some c, condition i) holds, we will say that Q is integral with 
respect to c. If, for some c, condition ii)holds, we will say that Q is weakly 
integral with respect to c. 

Notice that if Q is integral with respect to c, then any simplex-based 
LP-solver, when optimizing cover Q, will find an optimal integral solution 
to SEL. If Q is weakly integral with respect to c, the value found by the 
LP-solver will be equal to the cost of an optimal solution to SEL. 

Consider 'the following restriction on the objective function c. 

Restriction 1: For a.ll j = 1, ... , n, there exists a tj with 1 :$ tj :$ T - p + 1 
such that 

Cjt < Cj,tH for t = 1, ... , tj - 1, and 
Cjt > Cj,tH for t = tj, ••• , T - p. 

Theorem 4.6 If C satisfies Restriction 1, then Q is integral with respect to 
c. 

Proof: 
Let us ca.ll each element of Q a feasible LP-solution, and let us ca.ll each 
x E Q such that cx :$ cy for a.ll y E Q, an optimal LP-solution. It will 
sometimes be useful to think of x E Qas of a matrix with elements x jt. 

Consider an optimal LP-solution x*. Let us refer to Ej=1 xjt as the 
weight of column t, t = 1, ... , T - p + 1. We claim that any optimal LP
solution satisfies the following property: there exists r E {O, ... , n} such that 
-columns 1,1 + p, 1 + 2p, ... , 1 + (r - l)p have weight 1; 
-column 1 + rp has weight 1 - € E [0,1]; 
-column T - (n - r)p + 1 has weight €; 
-columns T- (n-r-l)p+ I,T- (n-r-2)p+ 1, .. . ,T-p+ 1 have weight 
1. 
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Intuitively, one can explain this as follows. Consider a feasible LP
solution y. IT some fraction Yjt > 0 with,t < tj (t > tj) can be "shifted" to a 
smaller (greater) period, a solution with lower cost arises due to Restriction 
1. Thus, such a shift cannot be possible in an optimal LP-solution, and this 
results in the property described. 

Let us now establish the validity of the property in a more formal way. 
First, observe that there cannot be two jobs ibh and two time periods s, t 
such that th ~ s < t < til, xjl,t > 0 and xj2,s > O. Otherwise, indeed, we 
could construct a feasible LP-solution Y with lower cost than x* by setting 
Yjt = xjt for all i, t except: 
Yjl,t := xjl,t - /3 
Yj2,S := xj2,s - /3 
Yil,s := xjltS + /3 
Yh,t := xj2,t + /3, where /3 = min(xjl,t' xj2,S)' 
Next, consider the first index r E {O,; .. , n} such that column 1 + rp has 
weight 1- f with f > O. Suppose that there exists a time period t such that, 
for some job ill 1 + rp < t < til and xjl,t > O. Choose t as small as possible 
with these properties. Then again, we could define a solution Y' with smaller 
cost than x* by setting Yjt = xjt for all i, t, except: 
Yil,t := xjl,t-min(f, xjl,t) 
Yil,l+rp:= xit,1+rp+min(f,xjl,t)· 
The solution Y clearly satisfies constraints (4.1). It is also straightforward 
that Y satisfies (4.2) if t ~ (r + 1 )p. Moreover, if t > (r + 1 )p, then the choice 
of t implies that xj2,s = Yh,8 = 0 for all 1 + rp < s, ~ (r + 1)p and for all 
h E {1, ... , n} (else we would have xjltt > 0, xj2,s > 0 and th ~ s < t < tjl' 
which contradicts our first observation); hence (4.2) is satisfied in this case, 
too. 

From the previous discussion we conclude that xjt > 0 implies t ~ tj for 
all t > 1 + rp and for all jobs i. In view of Restriction 1, it is now easy to 
argue that the weight of columns T - p+ 1, T - 2p+ 1, ... , T - (n - r -1 )p+ 1 
must be exactly 1, and that the weight of column T - (n - r)p + 1 is f. 

Now we will demonstrate that if x* is fractional, it can be written as a 
convex combination of integral solutions, and therefore cannot be an extreme 
vertex of Q. This implies· that Q is integral with respect to c. 

Let us construct from the solution x* a matrix M with n rows and n 
columns as follows. First, "merge" columns 1 + rp and T - (n - r)p + 1 
(with weights f and 1 - f respectively) into one column by summing the 
corresponding entries. Let M now consist of all columns in the solution x* 
which have weight 1 (including the "merged" column). Obviously, M has 
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n columns and n rows each with weight 1. Thus, we can apply Birkhoff's 
result (Birkhoff (1946» on doubly stochastic matrices to show that M is a 
convex combination of some {O,1} matrices, which have the property that 
each column and each row contain precisely one 1. The solution to SEL 
corresponding to such a {O, 1} matrix can be found straightforwardly: if an 
entry (i,j) is 1, then job i is scheduled at the period corresponding to the 
j-th column. Notice that if in x* a job has positive fractions in both merged 
columns, this can be handled by "splitting" the corresponding {O, 1} solution 
with multipliers according to those fractions. 0 

The reader will have no difficulty in verifying that, if we relax in Restriction 
1 the '<' and '>' sign to '~' and '~', (let us call this relaxed Restriction 1) 
we can deduce the following corollary. 

Corollary: If c satisfies relaxed Restrictio?l 1, then Q is weakly integral 
with respect to c. 

Notice also that, under relaxed Restriction 1, Q is not integral with respect 
to c, since even for a constant objective function (which certainly satisfies 
relaxed Restriction 1) all vertices of Q, including the non-integral ones, are 
optimal. 

The fact that we consider here a problem where all jobs have equal length 
is crucial for Theorem 4.6, as witnessed by the following example. 

Example: 
Let n = 2, PI = 1, P2 = 2 (where Ph j = 1,2 denotes the processing time of 

job j), and let Cjt = (~ ! :). In order to accommodate jobs of different 

length in our formulation, we reformulate constraints (4.2) as follows: 
n t 

L L xjs~1fort=1,2,3. 
j=1 s=max(l,t-pj+1) 

(4.7) 

Now, a feasible solution to the model defined by constraints (4.1), (4.7) and 
the nonnegativity constraints is: Xu = XI2 = X2I = X23 = !, XI3 = X22 = 0. 
This solution has cost 3!, whereas any optimal integral solution has cost 4. 
o 

Obviously, Restriction 1 subsumes the case where the cost-coefficient of each 
job is simply its starting period. Adding job-dependent release dates to this 
case translates into the following restriction on the objective function. 



76 Chapter 4 

Restriction 2: For all j, there exist Tj, with 1 ~ Tj ~ T - np+ 1 such that, 
for all t: 

Cjt = t - Tj if t ~ Tj 

Cjt = M if t < Tj, 

where M is a sufficiently large number. 

Theorem 4.7 If c satisfies Restriction 2, then Q is integral with respect to 
c. 

Proof: 
Observe that in an optimal LP-solution x*, xJt = 0 if Cjt = M for all j, t. 
This is due to the fact that we assumed that rj ~ T - np+ 1 for all j, which 
allows enough room to accommodate all weight on cost-coefficients whose 
value is not M. 

Assume, without loss of generality, T1 ~ T2 ~ ••• ~ Tn. Further, define 
Si as follows, for i = 1, ... , n: 

Sl = Til 

Si =max(si-1 + p, ri). 

We claim that in an optimal LP-solution x*, columns Si have weight 1 
for i = 1, ... , n. The proof of this claim is by contradiction. Consider the 
minimal i E {1, .. . ,n} for which column Si has weight < 1. Let us refer to 
this column as column Si1. Obviously, there must exist a job, say job j1, 

which is fractionally scheduled on a period t1 ~ Si1 and has positive weight 
on a period t2 > Si1 , that is xJ~ t > 0 and xJ~ t > o. We will now construct 

1, 1 b 2 

a feasible LP-solution Y with lower cost than x*, thereby contradicting the 
optimality of x*. 

The solution Y can be constructed in the following way. Let us "transfer" 
a quantity € =min{j,t:xjt>O}xJt from XJ1 h to XJ1,8i1 . To be precise, set Yjt = 

xJt' for all j, t, except: 
Yj1 ,t2 =XJ1 h - €, 

Yj1 ,8i1 =XJ1 ,8;1 + €. 

This solution Y has gained (t2 - Si1)€ in cost, however, it may not satisfy 

constraints (4.2): constraint E7=1 E;~8;;-1 Yjt ~ 1 may be violated, since 
we added € to the left-hand side. This can be repaired in the following way. 
Pick the first column t, with Si1 < t ~ Si1 + P - 1, such that Yjt > 0 for some 
job j, and set: 
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Yjt := Yjt - €, and 
Yj.t2 := Yj,t2 + €. 

77 

Notice first that this yields a feasible LP-solution, and secondly, this 
deteriorates the cost of the previous solution Y by at most (t2 - Sil - 1 )€. 
Thus, the solution Y constructed here achieves a net gain of at least €. This 
contradicts the optimality of x* and therefore columns Si have weight 1 for 
i = 1, .. . ,n. 

It follows that the optimal LP-solution contains n columns and n rows 
each with weight 1. Thus, we can use Birkhoff's result (1946) as we did in 
Theorem 4.6, to show that, if x* is fractional, it can be written as convex 
combination of {0,1} solutions. 0 

Finally, consider the following restriction, which models a common re
lease date and job-dependent due dates: -

Restriction 3: For all j,t, Cjt E {0,1}; also, there exists r E {l, ... ,T
p + 1} and, for all j, there exist dj E {r, . .. , T - p + 1} such that 

Cjt = ° for t = r, ... , dj, and 
Cjt = 1 for t = 1, ... , r - 1 and for t = dj + 1, ... T - p + 1. 

Theorem 4.8 If C satisfies Restriction 3, then Q is weakly integral with 
respect to c. 

Proof: 
Consider some optimal LP-solution x*, and assume it is fractional. We prove 
the theorem by manipulating this solution so that an integral solution arises 
whose cost does not exceed the cost of the optimal LP-solution. First, we 
apply the following procedure. If the weight of column r is smaller than 1, 
find the earliest positive fraction after r (breaking ties arbitrarily) and shift 
it (or part of it) to period r. More formally, let the weight of column r equal 
1- €, for some € > 0, and let t denote the smallest t > r such that the weight 
of column t is positive. For some job j with xjt > 0, we now set: 
xjt := xjt-min{€,xjt), and 
xjr := xjr +min{ €, xjt)· 
Repeat this step until column r has weight 1. Next, repeat this procedure for 
each of the columns r + ap, a = 1, ... ,n-1. If, for some a E {1, ... , n -1}, 
r + ap > T - p + 1, the procedure is continued for columns 1,1 + p, ... , until 
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we obtain a solution in which n columns have weight 1. Due to the fact that 
"T is large enough" (we assumed T ~ p. (n + 1)) the solution constructed by 
repetition of the described procedure yields a feasible LP -solution. Also, it is 
easy to see that the cost ofthe solution constructed has not increased. Now, 
assume, without loss of generality that d1 ~ d2 ~ ••• ~ dn • Suppose XIT =1= 1. 
Then there exists a job, say job j, such that XiT > 0, j =1= 1, and there exists 
a column, say column t (=1= r), such that Xit > O. Let "'{ =min(xit, XiT)' Set 
xiT := xiT + ",{, 
X* '- x* "'{ jT'- jT - , 

Xit := Xit - ",{, 

Xit := Xit + "'{. 
Notice that this solution is still a feasible LP-solution whose value is not 
worse than the original solution (since if CIt = 0 then Cjt = 0 by the ordering 
we assumed). By repeating this step until xiT = 1, and next by deleting 
columns r, r + 1, ... , r + p - 1 and jobsi with di ~ r + p - 1, and repeating 
this procedure again, we finally find a {O, 1} solution with the same cost as 
the cost of the LP-relaxation. 0 

Notice that under Restriction 3, even with dj = d for all j, Q is not integral 
with respect to c. This can be derived from the fact that, with r = 1 and 
dj = T - p + 1 for all j, a constant objective function appears for which, as 
mentioned earlier, all vertices of Q are optimal. 

In case we relax Restriction 3 to allow for job-dependent release times rj, 
we lose the weak integrality of Q as witnessed by the following example. 

Example: (1 0 1 1) . 
Let n = 2, p = 2 and let Cjt = 0 0 0 1 . The solutIOn X12 = X14 = 
X21 = X23 = t, and all other Xjt = 0, is a feasible LP-solution with cost t. 
However, the optimal integral solution has cost 1. 0 
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4.4 More facet-defining and valid inequalities for 
SEL 

In this section we will exhibit more facet-defining and valid inequalities for 
SEL. To start with, let us consider the following inequalities: 

s+p+'-l n s+p-l 
EXit + E E Xjt ~ 1 
t=s j=l t=s+' 

#i 

for 1 ~ i ~ n, 1 ~ 1 ~ p - 1 and 1 ~ s ~ T - 2p -I + 2. (4.8) 

These inequalities are introduced in Sousa and Wolsey (1992). Notice that 
the inequalities (4.2) are the special case of (4.8) for 1 = O. However, 
for reasons of convenience, we maintain the distinction between these two 
classes. It is not difficult to see that the inequalities (4.8) are valid, but they 
are also facet-defining, as witnessed by the next theorem (due to Sousa and 
Wolsey (1992». 

Theorem 4.9 The inequalities (4.8) define facets of P. 

The validity of this theorem will also follow from the validity of the more 
general Theorem 4.11. 

Observe that all {in)equalities (4.1), (4.2) and (4.8) are ofthe set-packing 
type, i.e. they only involve coefficients 0 or 1, and their right-hand side equals 
1. In fact, the following holds: 

Theorem 4.10 All facets of P defined by set-packing inequalities are given 
by (4.2) and (4.8). 

Proof: 
Consider an arbitrary valid set-packing inequality I and define 

t* = m~ f1;r{t2 - tl : Xjh and Xj,tl occur with coefficient 1 in I}. 
3 2_ 1 

Let i be the job which realizes t*. We will make use of the following ob
servation: no two variables Xjt and Xks, with k =F j, and Is - tl ~ p, can 
simultaneously occur with coefficient 1 in I. 

Let us first consider the case t* ~ 2p - 1. Then, it is easy to verify that 
no variable Xu, i =F j, for any t, can occur in the inequalitYi thus I is implied 
by equalities (4.1), and cannot represent a facet. 

Next, suppose p ~ t* ~ 2p - 2, i.e. t* = P + 1 - 1 for some 1 ~ I ~ p - 1. 
More specifically, suppose that Xis and Xi,s+p+'-l have coefficient 1 in I. 
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From our previous observation, it easily follows that, for any j f= i, Xjt 

cannot occur in I if either t ~ s + 1 - 1 or t ;?:: s + p. Hence, I is implied by 
(4.8). 

Finally, when t* ~ P - 1, let s be the smallest index such that, for some 
k, Xks occurs in I with coefficient 1. It follows again from our observation 
that, for all j and for all t ;?:: s + p, Xjt does not occur in I. Hence, I is 
implied by (4.2). 0 

(van den Akker, van Hoesel and Savelsbergh have independently established 
that, for the more general scheduling problem S mentioned in Section 4.1, all 
facet-defining set-packing inequalities are given by Sousa and Wolsey (1992) 
(see van den Akker, van Hoesel and Savelsbergh (1993»). 

In the following we investigate generalizations of (4.8). To start with, 
(4.8) can be generalized to the following inequalities: 

s+k·p+l-l k-ls+p-l 

L L Xjt + LL L Xj,t+r.p ~ k, 
jeJ t=s j¢J r=O t=s+' 

for J C {l, ... ,n} with IJI = k > 0, 

1 ~ 1 ~ p - 1 and 1 ~ s ~ T - (k + 1) . p - 1 + 2. (4.9) 

Notice that for J = {i}, (4.9) is equivalent to (4.8). The inequalities (4.9) 
are valid and even facet-defining as witnessed by the following theorem: 

Theorem 4.11 The inequalities (4.9) define facets of P. 

Proof: 
To facilitate the proof, we define subsets of periods which occur in (4.9). 
Let: 

A = [s, s + k . p + 1- 1] and 

B {t + r· p: r = 0, ... , k - 1jt = s + I, ... , s + p - 1} 

= [s + I, s + p - 1] U [s + p + I, s + 2p - 1] U ... 
... U [s + (k - 1) . p + I, s + k . p - 1]. 

(see Figure 4.2 for an illustration of the case p = 5, k = 3, 1 = 2). With 
these notations, (4.9) can be rewritten as 

LLXjt+ LLXjt ~ k. (4.10) 
jeJteA j¢JteB 



Section 4.4 81 

8 8 + 1 8 + p - 1 8 + p + 18 + 2p - 1 8 + 2p + Is + 3p - 1 8 + kp + 1 - 1 

B 

Figure 4.2 

First we show that these inequalities are- valid. Suppose that k + 1 jobs 
start in the interval [8, 8 + k· p + 1- 1]. The only way to achieve this is to 
start exactly one job in each ofthe intervals [8, 8+1-1], [8+P, 8+p+I-1], 
... ,[8 + k· p, 8 + k· p + 1- 1] (this is easily checked by induction on k), i.e. 
to start the jobs in A\B. However, the periods in A\B only occur in (4.10) 
for the k jobs in J. This implies that (4.10) is valid. Let us show now that 
(4.10) is facet-defining. 

n T-p+1 

Let F = {x E P: L LXjt+ L LXjt = k} and suppose L L 'KjtXjt = 
jeJ teA jrt.J teB j=1 t=1 

'Ko for all x E F. 

Now, let j E J and t E A\{8 + k· p + 1- 1}. Consider a solution with job j 
started at period t, and other jobs started at t - p, t - 2p, ... and t + p + 1, 
t + 2 P + 1, ... , in such a way that jobs in J are started in A (thus ensuring 
that x E F). Shifting job j one period towards t + 1 proves 

'Kjt = 'Kf for all j E J, for all tEA. (4.11) 

Let now i ¢ J and t E [8+r'p+I,8+(r+l)·p-2], where r E {O, .. . ,k-1} 
(this is assuming 1 $ p - 2; else this step of the proof is not 'required). 
Consider the following solution: start job i at time t, start k - 1 jobs from 
J in A, at periods t - p, t - 2p, ... , and t + p + 1, t + 2p + 1, ... , and start 
all other jobs outside A. Shifting job i one period proves 

'Kit = 'Ki for all i ¢ J, t E [8 + r· p + I, 8 + (r + 1). p - 1], 

rE{O, ... ,k-l}. (4.12) 
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Also, interchanging job i ¢ J and job j E J proves (for any I E {I, ... , 
p-1}): 

(4.13) 

(4.12) and (4.13) together imply: 

1rit = 1rf for all i ¢ J, for all t E B. (4.14) 

Now, a similar reasoning as in Theorem 4.5 ensures that 

1rit = 1rfut for all i ¢ J, for all t ¢ A. (4.15) 

Furthermore, consider a solution with the jobs from J at s, s + p, ... , 
s + (k - 1). P and job i, i ¢ J at s +k· p. Simple interchange arguments 
imply, together with (4.10) and (4.15), 

1rit = 1rfut for all i ¢ J, t ¢ B. ( 4.16) 

Also, similar arguments imply 

1rjt = 1rjut for all j E J, t ¢ A. ( 4.17) 

Moreover, it is easy to see that 

in + out _ out + in l' all·· E {I 2 } 1rj 1ri - 1rj 1ri lor t,J " ... , n , (4.18) 

or equivalently (3 = 1rf - 1rrt for all j = 1, ... , n. 

Now (4.10), (4.14), (4.16), (4.17) and (4.18) imply: 

n T-p+l 

2: 2: 1rjtXjt 
j=1 t=1 

= 2: 2: 1rfXjt + 2: 2: 1rjutXjt + 2: 2: 1rfXjt + 2: 2: 1rrtXjt 
jeJ teA jeJ t.f/.A jf/.J teB jf/.J'tf/.B 

n T-p+1 

= 2: 1rjut 2: Xjt + (3. (2: 2: Xjt + 2: 2: Xjt), 
j=1 t=1 jeJ teA jf/.J teB 

proving the theorem. o 
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Even though there is an exponential number of inequalities of type (4.9), 
the separation problem for this class of inequalities is polynomially solvable. 
Indeed, notice that (4.9) can be rewritten as: 

n k-1 s+p-1 k s+I-1 

'E 'E 'E Xj,Hr·p + 'E 'E 'E Xj,t+r.p::; k. ( 4.19) 
j=1r=O t=s+1 jEJr=O t=s 

We want to check whether a given x* violates one of these inequalities. Fix 
s, 1 and k (there are only O(pnT) choices for these three values). Then, the 
first term of (4.19) is a constant. Pick the k values of j which maximize the 
second term and put them in a set J*. If X* violates (4.19) for any J, then 
it does so for J*. 

Another way of generalizing the inequalities (4.8) is the following. Choose a 
non-empty set J C {1, ... , n} and a non-empty set S C {1, ... , T - 2p + 2}. 
For each s E {1, ... , T - p + 1}, define qs = 1 if s E Sand qs = 0 otherwise. 
Then, by adding the constraints (4.1) for j E J and the constraints (4.2) for 
s E S, each with coefficient !, we obtain the following valid inequality: 

II 1 t j (2: + 2:' 'E qs) . X jt 
s=t-p+1 

T-p+1 

'E'E 
jEJ t=1 

II t j 1 2: . s=t;+1 qs . Xjt ::; L2:(IJI + ISI)J 
T-p+1 

+ 'E 'E ( 4.20) 
j~J t=1 

We refer to these inequalities as (J, S) inequalities. The inequalities (4.8) are 
the special case of (4.20) obtained for J = {i} and S = {s, s+I}. Of course, a 
more sophisticated choice for S could lead to other valid inequalities. Indeed, 
it is possible to generalize inequalities (4.8) by choosing S as k couples of 
periods in the following way: for some k 2': 2 and 1 E {1, ... ,p - 1}, 

S={s, s+l, s+p, s+p+l, ... ,s+(k-1)·p,s+(k-1).p+l}. 

However, the resulting (J, S) inequalities do not define facets of P. In 
fact, (when k 2': 2 of course), they can be strengthened by lifting certain 
coefficients to 2. The following inequalities result: 

s+k·p-1 s+k·p+I-1 k-1 s+/-1 

'E 'E Xjt + 'E Xit + 'E 'E Xi,Hr.p::; k, 
j#i t=s+1 t=s r=1 t=s 

for i, k, 1, s with 1 ::; i ::; n, 1 ::; k ::; n,l ::; 1 ::; p - 1 and 

1::; s ::; T - (k + 1) . p -1 + 2 ( 4.21) 
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(observe that, when k ~ 2, then some variables occur with coefficient 2 in 
(4.21)). The following holds: 

Theorem 4.12 The inequalities (4.21) define facets of P. 

Proof: 
We first introduce some notation. With i, k, I, s as in (4.21), let 

A [s,s+k·p+I-1], 

C [s+l,s+k·p-1], 

D = {t + r . p : r = 1, ... , k - 1; t = s, .. . , s + 1 - 1} 

[s + p, s + p + 1- 1] U [s + 2p, s + 2p + 1- 1] u ... 
. . . U [s + (k - 1) . p, s + (k -"1) . p + 1 - 1]. 

We can rewrite (4.21) as 

L L x jt + L Xit + 2 . L Xit ~ k 
#i tEG tEA \D tED 

( 4.22) 

Let us first show that (4.22) is valid for P. Consider any feasible schedule. 
It is easy to see that the only way to start k jobs in C is to start them in 
C\D = [8 + 1,8 + P - 1] U ... U [8 + (k - 1) . p + 1,8 + k . p - 1] (one job in 
each subinterval). But, if this is the case, then there is no room left to start 
job i in A, and hence (4.22) is satisfied. So, the only way to violate (4.22) 
is to start k - 1 jobs in C, and job i in D. Let us suppose job i starts at 
8 + r· p + q, r E {1, .. . ,k - 1}, q E {O, .. . ,1- 1}. Then two intervals of 
consecutive periods remain for placing k - 1 jobs in C: 

[8+1, 8+(r-1).p+q]and [8+(r+1)·p+q, s+k·p-1]. 

But it is easy to check that no k - 1 jobs can start in these intervals. This es
tablishes the validity of (4.22). Let us show now that (4.22) is facet-defining. 

n T-p+l 

Let F = {x E P: LLXjt+ L Xit+ 2 L Xit = k},andsuppose L L 7rjtx. 
#itEG tEA\D tED j=l t=l 

7ro for all x E F. 
Consider a solution with job j, j f:. i, starting at period t E 6\ {8 + k . p - 1}. 
Let the other jobs start at t - p, t - 2 p, ... , and at t + p + 1, t + 2 p + 1, ... , 
while ensuring that x E F (this is always possible). Shifting job j towards 
period t + 1 proves that 

7rjt = 7r)D for all j f:. i, for all t E C. ( 4.23) 
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Now, consider a solution with job i placed at t, with t E [s, s + 1 - 1], and 
all other jobs at t - p, t - 2 p, ... , and t + p + 1, t + 2 p + 1, .... This can be 
done in such a way that x E F, since t+p+ 1, t+2p+ 1, ... , t+ (k -1) .p+ 1 
are k - 1 periods in C. Now, shifting job i from t to t + 1 proves that 

1f'it = 1f'~nl for all t E [s, s + 1]. (4.24) 

A similar argument shows: 

1f'it = 1f'~n2 for all t E [s + k . p, s + k . p + 1 - 1]. ( 4.25) 

Consider next a schedule x with job i starting at t, t E [s + r . p + 1, s + 
(r + 1) . p - 2], for some 0 ::; r ::; k - 1, and k - 1 other jobs starting at 
t - r . p, t - (r - 1) . p, ... , t - p, t + p + 1, ... , t + (k - r - 1) . p + 1. Notice 
that the latter periods are all in C\D, and hence x E F. Comparing x with 
another schedule in which job i starts at t + 1 shows that 1f'it = 1f'i,t+1 for 
all t E [s + r . p + 1, s + (r - 1) . p - 2]. Also exchanging job i with one of 
the other jobs which start in C\D shows, in combination with our previous 
observations (4.23), (4.24) and (4.25) that: 

( 4.26) 

Now, consider a solution with job i starting at t, tED and place the other 
jobs at t - p, t - 2 p, ... and t + p, t + 2 p, ... , ensuring that the solution is 
in F (notice that exactly k - 2 of these periods are in D, and hence in C). 
Interchanging job i and job j i= i leads easily to 

1f'it = 1f'1 for all tED. (4.27) 

To prove 1f' jt = 1f'jut for all j, for all t (j. C, we refer to the construction used 
in Theorem 4.5. Moreover, simple interchange arguments imply: 

With these last equalities established and together with (4.23), (4.26) and 
(4.27) the theorem follows easily. 0 

Notice that there are O(pn2T) inequalities in the class (4.21). Hence, the 
separation problem for this class of inequalities can be solved in polynomial 
time. 
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4.5 A cutting-plane algorithm for SEL 

In this section, we describe an unsophisticated cutting-plane algorithm for 
SEL, based on the results of sections 4.3 and 4.4, and we report on its perfor
mance on randomly generated problem instances. We are mainly interested 
in the question whether the inequalities derived in Section 4.4 are of any 
practical relevance, that is whether they are able to cut off fractional solu
tions of the problems we generated and whether they are able to improve 
the LP lower bound. Therefore, no attempts were made to minimize or even 
record running times of the algorithm for the various problem instances. 
Concerning this topic of running times, we will restrict ourselves to some 
general remarks later in this section. 

The cutting-plane algorithm works as follows. We start with a model 
consisting solely ofthe constraints (4.1). This model is solved to optimality 
(we used the LP-package LINDO). Then the following six classes of inequal
ities are searched successively in order to find violated inequalities (where R 
denotes the following set of periods (see Section 4) 
R={s, s+l, s+p, s+p+I, ... ,s+(k-1)·p, s+(k-1)·p+l}): 

Class 1: constraints (4.2), 

Class 2: constraints (4.8), 

Class 3: constraints (4.9) with k > 1, 

Class 4: constraints (4.21) witk k > 1, 

Class 5: constraints (4.20) with IJI = 2, and S = R u {sd with 81 

such that 1 ~ S1 ~ S - P or 8 + (k - 1) . P ~ S1 ~ T - 2p + 2, 

Class 6: constraints (4.20) with IJI = 3, and S = R u {S1, S2} with 
81, S2 such that 1 ~ S1, S2 ~ S - P or s + (k - 1) . p ~ S1, S2 ~ T - 2p + 2 
and S1 ~ S2- p. 

When violated inequalities are found, they are added to the model, the 
extended model is solved to optimality and the whole process is repeated. 
When no violated inequalities are detected or if an integral solution is found, 
the algorithm stops. 

A few implementation issues are worth mentioning. First, if violated 
inequalities in one of the six classes are found, then subsequent classes are not 
checked. Secondly, at each iteration, only those inequalities are maintained 
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whose slack is smaller than 0.1; all other inequalities are removed from the 
model. Observe also that, for all classes of valid inequalities used in this 
algorithm, the separation problem is polynomially solvable. 

The cutting-plane algorithm was tested on 60 problem instances divided 
over 2 types. We generated 30 problem instances from Type 1, distributed 
over 6 categories, where a category is determined by a specific choice of p 
and n (see Table 4.1 for the problem instances of Type 1). Problem instances 
of this type are such that eaeh cost-coefficient Cjt is drawn from a uniform 
distribution whose range can also be found in Table 4.1. 

Problem instances from Type 2 (see Table 4.2) represent the case of 
weighted start-times with job-dependent release dates and deadlines. Here, 
for each job j, the release date r j is an integer drawn uniformly between 
1 and !pn; the deadline dj is an integer drawn uniformly between rj and 
0.6pn, and a weight Wj is drawn from the uniform distribution between 1 
and 10. The cost-coefficients of job j are now defined as follows: 
COt = W o(t - r 0) if r ° < t < do 3 3 3 3- - 3 
Cjt = M otherwise (where M denotes a large integer). 
Similar cost functions are considered by Sousa and Wolsey (1992) for jobs 
having arbitrary lengths. 

In tables 4.1 and 4.2, LP denotes the value of the LP-relaxation of model 
(4.1)-(4.3). CPA denotes the value found by the cutting-plane algorithm de
scribed earlier, and OPT denotes the value of an optimal solution, which was 
found by applying the branch-and-bound algorithm implemented in LINDO 
(where only those variables which were fractional in the solution of the LP
relaxation are forced to be 0 or 1). The symbol '(i)' denotes that the solution 
found is integral. Notice that all cost-coefficients are integral, so that all 
lower bounds computed can validly be rounded-up to the next integer. 

, Let us first comment on the results depicted in Table 4.1. Regarding 
the choice of T, preliminary experiments indicated that for relatively large 
values of T (T ~ (p + 1) . n) as well as for minimal values of T (T = 
p. (n + 1», the LP-relaxation of model (4.1)-(4.3) almost always has an 
integral optimal solution. So, we tried to choose T in such a way that 
fractional LP-relaxations arise. 



88 Chapter 4 

LP CPA OPT LP CPA OPT 

p=2 1 4 (i) 4 (i) p=3 1 14.25 14.40 15 
n = 20 2 7 (i) 7 (i) n= 30 2 14.00 14.47 15 
T=46 3 6.50 7 (i) T = 102 3 15.21 15.60 17 
Cjt in 4 12.33 13 (i) Cjt in 4 9 (i) 9 (i) 
[0-25] 5 9 (i) 9 (i) [0-40] 5 10.00 10.67 11 

p=2 1 7 7 (i) p=4· 1 15.00 15.81 17 
n = 30 2 10.5 11 (i) n= 20 2 19.50 22 (i) 
T=66 3 9 9.5 10 T=93 3 20.08 21.33 22 
Cjt in 4 11.11 11.38 12 Cjt in 4 23.00 24.40 26 
[0-25] 5 7.33 8 (i) [0-60] 5 23.43 25 (i) 

p=3 1 4.88 5 (i) 
.. 

p=5 1 12.62 14.5 16 
n= 20 2 8.17 9 (i) n= 20 2 11.00 11 (i) 
T=67 3 11.27 11.43 12 T = 114 3 21.17 22.88 23 
Cjt in 4 8 (i) 8 (i) Cjt in 4 22.14 24.24 26 
[0-25] 5 9.67 10 (i) [0-60] 5 15.90 16 (i) 

Table 4.1 

For the 30 instances considered in Table 4.1, the cutting-plane algorithm 
finds 17 times an integral solution (compared to 5 times for the LP-relaxation 
of (4.1)- (4.3» and, for the remaining instances, it improves the lower bound 
9 times. Not surprisingly, the results indicate that the problems get harder 
when p and/or n increase. For the 'easier' problems (p = 2, n = 20,30 
and p = 3, n = 20), the cutting-plane algorithm often finds integral optimal 
solutions. For the 'harder' problems (p = 3, n = 30, and p = 4,5, n = 
20) the algorithm usually improves the lower bound obtained from the LP
relaxation of (4.1)-(4.3). In case the cutting-plane algorithm terminated 
with a fractional solution, it had used inequalities from all six classes. So, 
for this type of problems, it appears that the inequalities derived in Section 
4.4 are quite useful. The I:unning time of the cutting-plane algorithm largely 
depends on the number of LP's which have to be solved. Generally speaking, 
this number increases from 10-20 for the easy problems to 80-120 for the 
hard problems. Of course, one can influence this number by the strategy 
one employs in adding valid inequalities. 
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Consider now the problem instances of Type 4.2. For this type, the LP
solutions very often turned out to be integral. We employed the following 
strategy in order to get instances whose LP-solution was not integral. For 
each of the categories, we continued generating random problem instances 
until 5 problems were available whose LP-solution was fractional. The total 
number of instances we had to generate for each category to find those 5 in
stances can be found in Table 4.2. Next, we ran the cutting-plane algorithm 
on the 30 instances we had selected in this way. 

LP CPA LP CPA 

p=2 1 9016 9018 (i) p=3 1 12258 12258 (i) 
n = 20 2 9039 9039 (i) n = 30 2 13110 13110 (i) 
T=46 3 9007.5 9008 (i) T = 102 3 12221 12221 (i) 
5 out 4 9048 9049 (i) 5 out 4 12142 12143 (i) 
of 33 5 8048 8048 (i) of 11 5 12112 12112 (i) 

p=2 1 13035 13035 (i) p=4 1 8597.5 9046 (i) 
n = 30 2 13037.5 13041 (i) n = 20 2 9098 9098 (i) 
T= 66 3 12081 12081 (i) T = 93 3 8035 8035 (i) 
5 out 4 14034 14034 (i) 5 out 4 9030 9033 (i) 
of 20 5 12145 12145 (i) of 8 5 8062 8062 (i) 

p=3 1 8071 8071 (i) p=5 1 8307 8307 (i) 
n = 20 2 9026 9026 (i) n = 20 2 10103 10103 (i) 
T= 67 3 8079 8079 (i) T = 114 3 9116 9116 (i) 
5 out 4 8052.5 8053 (i) 5 out 4 8127 8127 (i) 
of 29 5 8050 8050 (i) of 14 5 9063 9063 (i) 

Table 4.2 

The results summarized in Table 4.2 show that the algorithm works quite 
satisfactorily for this type of problem instances. In all cases, the algorithm 
finds an integral solution. The LP lower bound is improved 8 times. For 14 
problem instances, inequalities from class 2 were used; 6 times inequalities 
from class 3 were used, and twice inequalities from class 4 and 5 were used. 
Except for two problem instances, the number of iterations was below 20. 
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Chapter 5 

The tool loading problem: 
• an overVIew 



5.1 Introduction 

In this chapter we identify some basic models for production planning in 
FMSs. In doing so, we set the stage for Chapters 6-9 where some of these 
models are more thoroughly investigated. 

As described in Chapter 1, the ability of an FMS to perform various 
types of operations without requiring prohibitive effort is one of the charac
teristics which differentiates aflexible production system from a traditional 
one. This ability is called machine flexibility in Browne et al. (1984). Ma
chine flexibility is directly related to the capacity of the tool magazine and to 
the ease with which tools can be interchanged between the magazine and the 
tool holder. Therefore, planning models that explicitly take into account the 
bounded capacity of the tool magazine or the limitations and opportunities 
offered by tool changes are especially characteristic of flexible production 
systems as opposed to traditional ones. 

5.2 Machine flexibility and tool management 

The influence of tool management on the overall performance of automated 
production facilities has been stressed by several authors. The recent articles 
by Gray, Seidmann and Stecke (1993) and Veeramani, Upton and Barash 
(1992) contain comprehensive surveys of the literature on this topic. 

At the individual machine level (as opposed to the tool or system levels 
(see Grayet al. (1993)), tool management subsumes the problem of allocating 
tools to the machine and simultaneously sequencing the parts to be processed 
so as to minimize some measure of production performance. This generic 
one machine scheduling problem, or loading problem in the terminology of 
Stecke (1983), can somehow be seen as the FMS analog of the fundamental 
one machine scheduling problem in traditional manufacturing. 

A more precise formulation of the problem can be stated as follows. A 
part set or production order containing N parts must be processed, one part 
at a time, on a single flexible machine. Each part requires a subset of tools 
which have to be placed in the tool magazine of the machine before the part 
can be processed. The total number of tools needed to process all parts is 
denoted by M. We represent these d'ata by an M X N tool-part matrix A, 
with 

aij 1 if part j requires tool i 

o otherwise, 
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for i = 1, ... , M and j = 1, ... , N. The tool magazine features C tool 
slots. When loaded on the machine, tool i occupies Si slots in the magazine 
(i = 1, ... , M). We assume that no part requires more than C tool slots for 
processing. We refer to the number C as the capacity of the magazine and to 
Si as the size of tool i. (Typical magazine capacities lie between 30 and 120. 
Tool sizes are usually in the range {1,2,3}, with tools of size 1 being most 
common (see Stecke (1989». The total number of tools required, i.e. M, 
can be much larger than C, so that it is sometimes necessary to change tools 
while processing the order. A tool switch consists in removing one tool from 
the magazine and replacing it by another one. A batch ,of parts is called 
feasible if it can be processed without any tool switches. 

Additional data for the problem may include the processing time of each 
part, the total time available on the machine, the tool changeover time, the, 
operating cost of each tool, the number of tools of each type, etcetera (see 
Berrada and Stecke (1986), Kouvells and Lee (1991), Mazzola, Neebe and 
Dunn (1989), Rajagopalan (1985;1986), Stecke (1983) and de Werra and 
Widmer (1990». Due dates, however, are usually not taken into considera
tion in this short-term framework (see Hwang and Shogan (1989), Moreno 
and Ding (1993), Rajagopalan (1985) and Widmer (1991) for exceptions to 
this statement). 

The objective function of the one-machine loading problem can reflect 
various tactical goals: 

• maximizing the number of parts that can be produced without tool 
switching (Crama and Mazzola (1995), Hirabayashi et al. (1984), 
Hwang (1986), Hwang and Shogan (1989), Stecke (1983) and Stecke 
and Kim (1988», 

• maximizing the use of the magazine (Stecke (1983», 

• minimizing the number oftool switches (Bard (1988), Follonier (1994), 
Privault and Finke (1993), and Tang and Denardo (1988a); see also 
Chapter 9), 

• minimizing the number of times that production must be interrupted 
for tool switches (Hwang (1986), Rajagopalan (1985, 1986), Stecke and 

'. Kim (1988), and Tang and Denardo (1988b); see also Chapter 6), or 

.• optimizing more general performance measures (Kouvelis and Lee (1991), 
Mazzola, Neebe and Dunn (1989), Rajagopalan (1985), de Werra and 
Widmer (1990), Whitney and Gaul (1985) and Widmer (1991». 



Section 5.3 95 

(In multi-machine environments, balancing the workload often becomes a 
primary objective; see for instance Berrada and Stecke (1986), Sodhi, Agnetis 
and Askin (1994), Stecke (1983) and Stecke and Kim(1989).) In the next 
section we briefly present the main integer programming formulations that 
have been proposed in order to model the magazine capacity constraint and 
the interdependence between tools and parts. Then, we successively tackle 
three of the most basic objective functions (maximizing the number of parts 
in a feasible batch, minimizing the number of switching instants, minimizing 
the total number of tool switches). 

Notice that, by restricting our attention to a few fundamental one
machine scheduling models, we will only touch upon the surface of tool 
management issues in flexible manufacturing systems. Many combinatorial 
models of interest also arise in connection with other tool management prob
lems (for instance tool provisioning and arrangement and retrieval of tools 
in the magazine). For a discussion of these -we refer to the surveys of Gray 
et al. (1993) and Veeramani et al. (1992). 

5.3 Modeling the magazine capacity constraint 

5.S.1 A linear model 

We concentrate here on the simple case where no tool switches are allowed 
during the planning period (or, equivalently, we restrict our attention to a 
production period between successive tool switches). Under this restriction, 
the loading problem becomes one of selecting an 'appropriate' feasible batch 
of parts. Integer programming formulations of this problem usually rely on 
(some or all of) the following variables: 

and 

Xi = 1 if tool i is loaded in the tool magazine 

= 0 otherwise 

Yj = 1 if part j is processed during the period under consideration 

= . 0 otherwise 

for i = 1, ... , M and j = 1, ... , N. 
With these variables, the basic constraints of the one-machine loading 

problem can be formulated as: 

aijYj ::; Xi for i = 1, ... , M and j = 1, ... , N (5.1) 
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M 

2: SiXi < C (5.2) 
i=l 

Xi E {O, I} for i = 1, ... , M (5.3) 

Yj E {O, 1} for j = 1, .. . ,N. (5.4) 

The first group of constraints (5.1) expresses that all the tools needed for 
processing the selected parts must be loaded' in the magazine. Constraint 
(5.2) translates the limitations imposed by the capacity of the magazine. 

The simple formulation (5.1)-(5.4), augmented with a general objective 
function of the form 

N M 
maximize 2: QjYj + 2: ,Bixi, (5.5) 

j=l i=l 

has been proposed in Hirabayashi et al. (1984) to model the one-machine 
loading problem. It has been further examined in Crama and Mazzola 
(1995), Goldschmidt, Nehme and Yu (1994), Hwang (1986) and Hwang and 
Shogan (1989) and Stecke and Kim (1989). The formulation can also be eas
ily extended to account for multiple machines or for the possibility to switch 
tools between production periods. Multi-period, multi-machine extensions 
can be found for instance in Goldschmidt, Hochbaum and Yu (1992), Jaiku
mar and van Wassenhove (1989), Kouvelis and Lee (1991), Mazzola et al. 
(1989), Rajagopalan (1985), Tang and Denardo (1988a) and de Werra and 
Widmer (1990) and in numerous other papers. Thus formulation (5.1)-(5.4) 
can be viewed as an essential component of many complex FMS tool loading 
models. 

Interestingly, model (5.1)-(5.5) has also been considered in areas rather 
remote from the FMS world. It appears for instance in an order selection 
problem with high setup costs (Dietrich, Lee and Lee (1993», in capital 
budgeting models and in repair kit selection (Marner and Shogan (1987» and 
in a provisioning model proposed in Lawler (1976). An application to the 
allocation of memory space in databases is described in Goldschmidt et al. 
(1994). A restricted version (corresponding to the case where, two tools are 
needed for processing each part) also arises in a column generation approach 
to a graph partitioning model of compiler construction (Johnson, Mehrotra 
and Nemhauser (1993». As observed in Crama and Mazzola (1995), the 
full model (5.1)-(5.5) similarly arises if column generation is used to tackle 
hypergraph partitioning problems relevant to VLSI layout. 
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5.3.2 Nonlinear models 

Problem (5.1)-{5.5) can alternatively be modeled as a nonlinear integer prob
lem in (at least) two different ways. To see this, let us first assume without 
loss of generality that, in (5.5), O:j ~ 0 for j = 1, ... , N {if this is not the 
case, then the corresponding variable Yj can be set to 0 in an optimal solu
tion of (5.1)-{5.5». Then, by elimination of the y-variables, (5.1)-{5.5) can 
be equivalently reformulated as a nonlinear knapsack problem 

N M 

maximize E O:j IT Xi + E f3ixi 
j=l i:a;j=l i=l 

M 

subject to E SiXi :::; C 
i=l 

Xi E {O, I} for i = 1, .. . ,M. 

(5.6) 

(5.7) 

(5.8) 

The nonlinear knapsack problem with a quadratic objective function has 
been investigated in Chaillou, Hansen and Mahieu (1989), Gallo, Hammer 
and Simeone (1980) and Hammer and Rader (1994). More generally, because 
the coefficients of all its nonlinear terms are nonnegative, the objective func
tion (5.6) is supermodularj hence, (5.6)-(5.8) can be viewed as a special case 
of the supermodular knapsack problem studied in Gallo and Simeone (1988). 

On the other hand, Stecke (1983) suggested to model the magazine ca
pacity constraint by the following nonlinear inequality in the y-variables 

E( -l)IJI+1s(J) IT Yj :::; C, (5.9) 
J~0 jeJ 

where the summation runs over all nonempty subsets J ~ {I, ... , N} and 
s( J) denotes the sum of sizes of the tools common to all the parts in J. 
Denote by g(y) the left-hand side of (5.9). For any y E {O,l}M, g(y) is 
nothing but the inclusion-exclusion formula computing the sum of the sizes 
of the tools needed in order to process the batch {j E NIYj = I}. Hence, 
(5.9) is a valid expression ofthe capacity constraint. This expression can be 
viewed as resulting from the elimination of the x-variables in (5.1)-(5.2). 

When the x-variables do not appear in the objective function (5.5) (which 
is the case in the framework of Stecke (1983», then an alternativ~ formula
tion of (5.1)-(5.5)is given by 

N 

maximize E O:j Yj 
j=l 

(5.10) 
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subject to L(-l)IJI+IS(J)IIjeJYj ~ C 
#0 
Yj E {0,1} for j = 1, ... ,N. 

Chapter 5 

(5.11) 

(5.12) 

This model has a linear objective function and a single nonlinear con
straint, and only involves the y-variables. (Contrast this with the formula
tion (5.6)-(5.8), which has a nonlinear objective function, a linear constraint, 
and only involves the x-variables.) The merits ofthis model with respect to 
the linear model (5.1)-(5.5) will be discussed in the next section. 

5.4 Solving the batch selection problem 

Let us now survey some of the approaches that have been proposed to solve 
the batch selection problem (5.1)-(5.5) (or, equivalently, (5.6)-(5.8) or (5.10)
(5.12». 

The batch selection problem is strongly NP-hard. As a matter of fact, 
Gallo et al. (1980) observed that it is already NP-hard when each part re
quires two tools (Le., when (5.6)is quadratic), aj = 1 for j = 1, .. . ,N,(3i = 0 
and Si = 1 for i = 1, ... , M. A further refinement of this result is es
tablished by Goldschmidt et al. (1994). These authors also identify some 
polynomially solvable cases of the problem and describe a dynamic program
ming algorithm for its solution. Several authors have developed and tested 
branch-and-bound codes based on the ideas surveyed hereunder. 

In an early attempt to apply mathematical programming techniques to 
the solution of the batch selection problem, Stecke (1983) investigated var
ious procedures to transform (5.10)-(5.12) into a 0-1 linear programming 
problem. One of these procedures is the standard linearization method pro
posed in Glover and Woolsey (1974). This method can be viewed as re
placing (5.11) by a family of weaker inequalities, each of which is derived 
by substituting a linear function for every monomial of g(y). Crama and 
Mazzola (1992) proved that the linear description obtained in this way is 
weaker than the description (5.1)-(5.4), in the sense that its continuous re
laxation defines a larger feasible region than the relaxation of (5.1)-(5.4). As 
a consequence, algorithmic approaches based on the inclusion-,exclusion for
mulation (5.11)-(5.12) appear less promising than those based on the linear 
formulation (5.1)-(5.4). 

A fundamental observation regarding the batch selection problem is that 
the subproblem defined by (5.1), (5.3)-(5.5) (and omitting capacity con
straint (5.2» is polynomially solvable. Indeed, the constraint matrix of (5.1) 
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is totally unimodular, so that the subproblem is reducible to a network 
maximum :O.ow problem. It follows that the Lagrangian dual of (5.1)-(5.5) 
obtained by the relaxation of the capacity constraint is polynomially solvable 
and has the same optimal value as the linear relaxation of (5.1)-(5.5). This 
observation has been exploited by several authors in order to efficiently solve 
the linear relaxation (5.1)-(5.5), and hence to compute an upper bound on 
the optimal value ofthe problem (Chaillou et al. (1989), Gallo and Simeone 
(1988), Hwang and Shogan (1989) and Mamer and Shogan (1987)). 

Unfortunately, as observed in Dietrich et al. (1993), Hwang and Shogan 
(1989) and Johnson et al. (1993) (see also Chapter 6), the linear relaxation 
of (5.1)-(5.5) is often extremely weak. This has motivated researchers to 
investigate families of inequalities which could be used to strengthen the 
formulation (5.1)-(5.5). Specifically, Dietrich et al. (1993) concentrate on 
cuts 'implied. by optimality considerations', that is on inequalities satisfied 
by at least one optimal solution better than an incumbent solution (assuming 
that such an optimal solution exists). For the quadratic case (two tools per 
part), Johnson et al. (1993) present strong valid inequalities and facets for 
the convex hull of the feasible region defined by (5.1)-(5.4). Crama and 
Mazzola (1992) systematically investigate the polyhedral structure of (5.1)
(5.4). They derive several families of valid and/or facet-defining inequalities, 
some of which generalize results in Johnson et al. (1993). When N = 1 (one 
part) and Si = 1 for i = 1, ... , M, they obtain a complete description of 
the convex hull of the feasible region (subproblems with N = 1 naturally 
arise when one attempts to solve (5.1)-(5.5) via Lagrangian decomposition). 
Computational experiments will be necessary to establish the usefulness of 
the polyhedral approach to the batch selection problem. 

Numerous heuristics have been proposed for the solution of the batch 
selection problem. Most of these heuristics are of the greedy type: a selection 
rule is iteratively used to add parts to the current batch, as long as magazine 
capacity allows. Heuristics proposed in Dietrich et al. (1993), Rajagopalan 
(1985, 1986), Stecke and Talbot (1985), Tang and Denardo (1988b) and 
Whitney and Gaul (1985) (see also Chapter 6) are of this nature. As far 
as we are aware, the relative performance of these heuristics has not been 
directly tested on the batch selection problem, but only when batch selection 
is iteratively solved to produce a solution of the job grouping problem (see 
Kuhn (1990) and Chapter 6). In this framework, the most effective selection 
rules appear to rest on ,(variants of) the following principle: among the 
parts not yet in the batch, select one that has the largest number of tools in 
common with the parts already in the batch (this is the Maximal Intersection 
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rule described in Chapter 6; see also the MIMU rule in Tang and Denardo 
(1988b) and Whitney and Gaul (1985» 

A local search heuristic is proposed in Dietrich et al. (1993). Heuristics 
based on Lagrangian relaxation schemes have been tested in Hwang and 
Shogan (1989) and Mamer and Shogan (1987). Heuristics directly motivated 
by the quadratic knapsack formulation are considered in Hammer and Rader 
(1994). 

In conclusion, it seems that the basic integer programming model (5.1)
(5.5) is a rather ubiquitous one, and that the simplicity of its appearance is 
quite misleading. In particular, an intriguing question is that of the worst
case behavior of heuristics for the batch selection problem. It was observed 
by Crama and van de Klundert (1992, 1996) that most greedy-type heuristics 
have unbounded worst-case ratio for this problem. On the positive side, 
Kortsarz and Peleg (1993) describe a polynomial approximation algorithm 
with ratio O(MO.5) for the special case where each part requires two tools, 
Pi = 0 and Si = 1 for i - 1, ... , M (the exponent 0.5 can be slightly reduced 
at the cost of additional work). It would be interesting to extend these 
results to more general cases. 

5.5 Grouping of parts and tools 

In the previous section, we have focused on the problem of selecting a fea
sible batch, i.e. a subset of parts that could be produced without any tool 
switches. In general, however, the problem faced by the shop is that of pro
cessing the whole set of N parts as efficiently as possible. One way of turning 
this informal goal into a precise planning problem goes as follows: find a 
partition of the parts into a minimum number of feasible groups (batches). 
Equivalently, the objective function of this job grouping (or tool-part group
ing) problem is to minimize the number of tool switching instants. This 
objective is appropriate in situations where the automatic tool interchang
ing device can switch a set of tools simultaneously (see Hirabayashi et al. 
(1984), Stecke and Kim (1988) and Tang and Denardo (1988b). It is also 
relevant if the machine has to be shut down during tool int,erchanges. In
deed, in such a case, the fixed cost incurred for interrupting production may 
dwarf the time spent in actual tool switches (see Goldschmidt et al. (1992) 
and Hwang (1986». 

Let us also mention that the job grouping problem is closely related in 
spirit to the group technology cell formation problem, which has recently gen-
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erated an enormous amount of literature (see Askin and Standridge (1993) 
and Crama and Oosten (1996». The objective functions of these two prob
lems, however, are quite different. Moreover, many of the best known ap
proaches to the cell formation problem (King and Nakornchai (1982) and 
McCormick Schweitzer and White (1972» do not explicitly model the ca
pacity constraints which play an essential role for job grouping. 

The job grouping problem is thoroughly discussed in Chapters 6, 7 and 
8. The problem has been studied by several authors, by and large ignor
ing each other. Rajagopalan (1985;1986) and Tang and Denardo (1988b) 
observed that partitioning parts into a minimum number of batches can be 
seen as an extension ofthe classical bin packing problem (see also Stecke and 
Talbot (1985». Hence, the part grouping problem is NP-hard (Tang and 
Denardo (1988b». In Chapter 6 we notice thatthe problem remains NP
hard even when C = 3, and that deciding whether there exists a partition of 
the parts into two feasible groups is NP-cbmplete. The latter result is es
pecially interesting, as it establishes an unexpected connection between tool 
management problems and certain optimization problems related to VLSI 
and PLA (Programmable Logic Array) layout, such as those discussed in 
Mohring (1990). More precisely, in our terminology, the PLA block folding 
problem can be interpreted as that of determining the minimum value of the 
magazine capacity C such that the parts can be partitioned into two feasible 
batches. The PLA block folding problem is known to be NP-hard and is it
self closely related to a wide variety of combinatorial problems (see Mohring 
(1990) for details). It may be worthwile to further exploit this intriguing 
connection between FMS and VLSI models (more on this topic in: the next 
section). 

Various heuristic approaches have been proposed for the job grouping 
problem. Most of these heuristics iteratively solve (some version of) the 
batch selection problem in order to sequentially create feasible batches con
taining a 'large' number of parts (see Hwang (1986), Kuhn (1990), Ra
jagopalan (1985, 1986), Stecke and Kim (1988), Tang and Denardo (1988b) 
and Whitney and Gaul (1985». Based on computational experiments with 
randomly generated instances, this greedy approach seems to perform well 
when the batch selection subproblem is solved by heuristics baSed on some 
variant of the Minimum Intersection principle (see Chapters 6 and 7). 

From a theoretical viewpoint, however, most of the above heuristics can 
be shown to have extremely bad worst-case performance ratio's (see Crama 
and van de Klundert (1992, 1996». For instance, the MIMU heuristic (Tang 
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and Denardo (1988b» can produce a partition roughly ( C~2 ) IC times 

more batches than an optimal partition. This is especially striking in view 

of the fact that any arbitrary partition never uses more than ( C~2 ) times 

the optimal number of batches! 
Goldschmidt et al. (1992) describe polynomial approximation algorithms 

for some special cases of the job grouping problem. But more general results 
are called for. Let us notice here that, in particular any polynomial p
approximation algorithm for the batch selection problem can be turned into a 
polynomial algorithm with approximation ratio O(p logN) = O(pC) for the 
job grouping problem, as follows from general properties of greedy algorithms 
(see for instance Crama and van de Klundert (1994;1996» 

Hirabayashi et al. (1984) formulated the job grouping problem as a large
scale set covering problem. In this formulation, each column corresponds to 
a feasible batch of parts and the constraints express that each part must be 
included in some batch. The authors mention the possibility to solve this 
set covering formulation using a column generation approach, and concen
trate further on developing a branch-and-bound procedure for the column 
generation subproblem. The latter subproblem turns out to be exactly our 
old friend, the batch selection problem (5.1)-(5.5). 

Hwang (1986) (see also Hwang and Shogan (1989» and Tang and Denardo 
(1988b» rediscovered the previous set covering formulation, but, because of 
its size, did not use it for algorithmic purposes. These authors decided 
instead to rely on greedy heuristics (as mentioned above) or specialized 
branch-and-bound algorithms. In Chapter 6, a column generation procedure 
is implemented that solves the linear relaxation of the set covering formula
tion of the problem. Computational experiments indicate that this approach 
delivers extremely strong lower bounds (almost always equal, in these exper
iments, to the optimal value of the problem). Moreover, the approach also 
lends itself to the computation of good heuristic solutions. Altogether, the 
column generation approach allows to solve to optimality much larger and 
sparser instances than those previously tackled. 

5.6 Tool switching 

In some situations, the total number of tool switches incurred while pro
cessing an order appears to be a more relevant performance criterion than 
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the number of switching instants (Le., the number of batches). This is for 
instance the case when the setup time of operations is proportional to the 
number of tool interchanges, or when the tool transportation system is con
gested. The distinction between the number of tool switches and number of 
switching instants is clearly drawn in Tang and Denardo (1988a, 1988b) and 
is also discussed at length in Amoako-Gyampah (1994), Sodhi et al. (1994) 
and Stecke and Kim (1988). 

In Chapter 9, we address the following tool switching problem: determine 
a part input sequence and an associated sequence of tool loadings such that 
all the tools required by the j-th part are present in the j-th tool loading 
and the total number of tool switches is minimized. In this form the tool 
switching problem has been investigated in Bard (1988), Follonier (1994), 
Jaikumar and van Wassenhove (1989), Privault (1994), Privault and Finke 
(1993), Roger (1990), Tang and Denardo (1988a), de Werra and Widmer 
(1990), Widmer (1991). All these papers are restricted to the special case 
where the tools occupy exactly one slot in the magazine. We shall assume 
that this condition holds throughout the section. (Notice that the formula
tion of the problem becomes ambiguous when this assumption is lifted). 

In Chapter 9 we prove that the tool switching problem is NP-hard for 
any fixed C ~ 2. We also observe that deciding whether there exists a job 
sequence requiring exactly M tool setups is NP-complete. The latter result 
follows immediately from the kinship of the tool switching problem to the 
VLSI gate matrix permutation problem discussed in Mohring (1990). In our 
terminology, the gate matrix· permutation problem asks for the minimum 
value of the tool magazine capacity such that no tool needs to be set up 
twice. Since this problem is NP-hard, the tool switching problem must 
clearly be NP-hard, too. (Notice the similarity of this argument with the 
one presented earlier for the job grouping problem). 

The tool switching problem decomposes into two interdependent prob
lems, namely: 

(1) part sequencing: determine an optimal part sequence, and 

(2) tooling: given a fixed part sequence, determine a tool loading sequence 
that minimizes the number of tool switches. 

This is a two-level scheduling model, in the sense of Blacewicz and Finke 
(1994). 

Tang and Denardo (1988a) established that the tooling subproblem can 
be solved in time OeM N) by applying the so-called Keep Tool Needed Soon-
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est (KTNS) policy. This policy prescribes that, whenever tools must be 
removed from the magazine in order to make room for the tools required 
by the next part, then the tools that are kept should be those that will be 
needed the soonest in the future. As observed by Privault and Finke (1993) 
(see also Blacewicz and Finke (1994», the optimality of the KTNS principle 
was previously established by Belady (1966) for a restricted version of the 
tooling problem, in his investigation of paging techniques for computer mem
ory management. In a two-level memory system, a page fault occurs when 
a page must be moved from fast memory to slow memory to make room for 
a new page. The paging problem is that of deciding, for a given sequence of 
page requests, which pages to keep in a fast memory of C pages in order to 
minimize the number of page faults (see Belady (1966) and McGeoch and 
Sleator (1991». Thus, the paging problem is formally equivalent to a tooling 
problem in which each part would require exactly one tool. 

Tang and Denardo's proof of correctness for the KTNS principle relies 
on ad hoc combinatorial arguments. In Chapter 9, we present a more com
pact proof based on an appropriate integer programming formulation of the 
tooling subproblem. The constraint matrix of this formulation has the con
secutive ones property for columns, i.e. it is an interval matrix in the sense 
of Fulkerson and Gross (1965) and Nemhauser and Wolsey (1988). This 
directly implies that the tooling subproblem is reducible to a network max
imum flow problem, even in its generalized version where each tool i has its 
own setup time bi and the objective is to minimize the sum of all setup times 
(see Chapter 9). When all setup times are equal, i.e. when the objective 
is only to minimize the total number of switches, then the integer program 
can be solved by a greedy algorithm which turns out to be equivalent to 
the KTNS algorithm (this follows from more general results on greedy and 
totally balanced matrices; see Hoffman, Kolen and Sakaroyitch (1985) and 
Nemhauser and Wolsey (1988». 

The previous results have been further extended by Privault and Finke 
(1993). These authors give a direct network flow formulation of the tooling 
subproblem which allows them to model changeover costs of the form dik 

when loading tool i after unloading tool k. (Interestingly, this formulation 
is inspired from related work on the computer paging problem mentioned 
above). This approach leads to an O( N2) optimization algorithm for the 
generalized tooling subproblem. 

(We observe here, in passing, that nothing seems to be known concerning 
the complexity of the tooling subproblem when tool sizes are not uniform.) 

In spite of the simplicity of the tooling subproblem, the tool switching 
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remains a hard nut to crack. Many heuristics have been proposed for its 
solution, but we are not aware of any succesful attempts to solve reasonably 
large instances to optimality. As a consequence, the performance of different 
heuristics can only be compared relative to each other, as is done in Fol
lonier (1994), Privault (1994), Privault and Finke (1993), Tang and Denardo 
(1988a) and in Chapter 9. In Chapter 9 we also present partial results and 
suggest directions which may be worth exploring in order to compute tight 
lower bounds on the optimal value of the tool switching problem. More work 
is clearly needed on this question. 

Heuristics for the tool switching problem come in two flavors: construc
tion heuristics, which progressively construct a single, hopefully good part 
sequence, and local search heuristics, which iteratively modify an initial part 
sequence. In the first class, several approaches are based on approximate 
formulations of the tool switching problem as a traveling salesman problem, 
where the 'distance' between two parts is aft estimate of the number of tool 
switches required by these parts (see Privault (1994), Privault and Finke 
(1993), Tang and Denardo (1988a) and Chapter 9). It may be interesting to 
notice that one of these traveling salesman formulations (namely, the block 
minimization model in Chapter 9) is in fact an exact model for a database 
management problem closely resembling the tool switching problem (see 
Kou (1977)). Another type of construction heuristics fall into the category 
of 'greedy' heuristics: parts are successively added to a current subsequence 
on the basis of some (dynamically updated) priority criterion (see Follonier 
(1994) and Chapter 9). In Privault (1994) and Privault and Finke (1993), 
an efficient greedy-type heuristic is developed by drawing on ideas used in 
McGeoch and Sleator (1991) for the solution of on-line paging problems. 

Various local search strategies (2-exchanges, tabu search) for the tool 
switching problem have been tested in Follonier (1994), Privault (1994), Pri
vault and Finke (1993), Roger (1993), Tang and Denardo (1988a), Widmer 
(1991) and in Chapter 9. 



Chapter 6 

A column generation 
approach to job grouping 



6.1 Introduction 

An FMS consists of a number of numerically controlled machines, linked by 
automated material handling devices, that perform the operations required 
to manufacture parts. The tools required by these operations are stored in a 
limited capacity tool magazine attached to each machine. An automated tool 
interchanging device enables the machine to interchange tools very quickly 
(in seconds). This fast tool interchanging capability avoids costly setups 
while producing with the tools available in the magazine, and is an essential 
feature of FMSs. When it becomes necessary to add tools to the tool mag
azine to allow new operations, the machine sometimes has to be shutdown 
while the tools are interchanged, after which the machine may resume pro
duction. The latter type of setup is time-consuming (it may take up to two 
hours). The performance of an FMS may therefore be considerably boosted 
by reducing the occurrences of these setups. 

In this chapter we study a model which aims at minimizing the number 
of setups. We assume that a number of jobs must be processed on a single 
machine. The job grouping problem asks for a partition of the jobs into a 
minimum number of groups (batches), such that the jobs in each group do 
not require more tools than can be stored in the tool magazine (see Section 
6.2 for a precise formulation of the model). This is equivalent to minimizing 
the number of setups in the situation described above. 

The job grouping problem has been studied by different authors, who 
largely ignore each other. Hirabayashi et al.(1984) refer to it as the 'opti
mal parts grouping problem' and propose a set covering formulation of it. 
They mention the possibility to solve this set covering formulation using 
a column generation approach, but concentrate in their paper on develop
ing a branch-and-bound procedure for the column generation subproblem 
(see Section 6.2). Hwang (1986) investigates the equivalent 'optimal part 
type grouping problem'. He proposes to solve it approximately by sequen
tially creating groups that consist of a maximum number of jobs (this is in 
fact equivalent to solving the set covering formulation of the problem by a 
greedy heuristic; see Section 6.3). Hwang and Shogan (1989) use branch
and-bound to solve the sequence of subproblems. Hwang (1986) remarks 
that other sequential approaches (Whitney and Gaul, 1985) and group tech
nology approaches (Chakravarty and Shtub, 1984) exist for part grouping 
problems, although the latter are inapplicable to FMS because they disre
gard tool magazine capacity limitations. In Hwang and Shogan (1989) the 
approach of Hwang (1986) is extended to allow the consideration of due 
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dates. Rajagopalan (1985; 1986) gives a general model, which incorporates 
the job grouping problem as a special case. He presents a number of heuris
tic procedures for its solution (some of these will be presented in Section 
6.3). Stecke and Kim (1988) have extended and made comparisons between 
the procedures of Rajagopalan (1985), Whitney and Gaul (1985) and Hwang 
(1986). Rajagopalan (1985; 1986) and Tang and Denardo (1988b) observe 
that partitioning jobs into a minimum number of batches can be seen as 
packing the jobs into a minimum number of bins with fixed capacity. It 
follows that the bin packing problem is a special case of the job grouping 
problem, and hence, that the latter is NP-hard (Tang and Denardo, 1988b). 
Tang and Denardo (1988b) present a non-LP based branch-and-bound pro
cedure for job grouping. They propose non-trivial lower bounds (see Section 
6.2), and heuristics similar to Rajagopalan's (see Section 6.3). Kuhn (1990) 
has developed and tested more heuristics for job grouping. Related problems 
in process planning are also studied by Kusiak (1985b), Finke and Kusiak 
(1987) and Bard and Feo (1989). 

In this chapter, we implement a column generation approach to solve the 
linear relaxation of the set covering formulation of the job grouping problem. 
We demonstrate experimentally that this approach leads to the derivation 
of extremely strong lower bounds (always equal, in our experiments, to the 
optimal value of the problem). The column generation scheme is presented 
in Section 6.2. In Section 6.3, heuristic solution procedures are suggested. 
The implementation of our procedures is described in Section 6.4. Section 
6.5 reviews our computational experiments with these procedures. Section 
6.6 contains some conclusions. 

6.2 Lower bounds 

In this section, we present formulations for the job grouping problem and 
explain the column generation approach we used to derive lower bounds on 
its optimal value. Some easier, but weaker lower bounds are also discussed. 

6.2.1 The job grouping problem 

The job grouping problem can be described by the following model (Hirabayashi 
et al., 1984; Hwang, 1986; Tang and Denardo, 1988b). Assume there are N 
jobs and M tools. The basic data are the capacity C of the tool maga
zine and the tool requirements for the jobs. These tool requirements are 
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represented by a so-called tool-job matrix A of dimension M x N, with: 

aki = 1 if job i requires tool k 
= 0 otherwise, 

for k = 1, ... , M and i = 1, ... , N. We call a subset (group) S of jobs (or 
of columns of A) feasible if these jobs together require at most C tools, i.e. 
if I {k : EiES aki ~ 1} I ~ C. The job grouping problem consists in finding a 
minimum set offeasible groups such that each job is contained in (at least) 
one group. To formulate this as a set covering problem, let us suppose that 
there exist P feasible groups, and let 

% = 1 if job i is contained in the feasible group j, 
= 0 otherwise, 

for i = 1, ... , Nand j = 1, ... , P. The job grouping problem is: 

p 

minimize 'EYj 
j=l 
P 

subject to 'Eq .. y. > 1 
~J J - i=l, ... ,N, 

j=l 

y' > 0 J - j = 1, ... , P, 

Yj integer j = 1, .. . ,P, 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

where Yj = 1 if group j is part of the optimal covering (notice that Yj E 
{0,1} for j = 1, ... ,P in any optimal solution of (6.1) - (6.4)). Notice 
that an equivalent set covering model would be obtained if we restricted 
the set {1, ... , P} to the subset of maximal feasible groups, i.e. to those 
feasible groups of jobs to which no more job can be added without destroying 
feasibility. 

The main drawback of the formulation (6.1) - (6.4) is the possibly huge 
number of columns that it involves. Several authors report on efficient al
gorithms for solving large set covering problems to optimality (e.g. Balas 
and Ho (1980)), or for finding good heuristic solutions to such problems (e.g. 
Nemhauser and Wolsey (1988) and Vasko and Wolf (1988)). Here,'however, 
even generating the complete set covering formulation is a tedious task for 
larger instances (see Section 6.5, Table 6.6). In spite ofthis, we shall see in 
the next sections that it is possible to solve efficiently the LP-relaxation of 
(6.1) - (6.4), and that the optimal value of this relaxation provides a very 
strong lower bound on the optimal value of the set covering problem. The 
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latter observation can only be seen as an empirical one, without theoretical 
basis. Indeed, it is known that the LP-relaxation of arbitrary set covering 
problems can be rather weak. On the other hand: 

Theorem 6.1 Any instance of the set covering problem can be interpreted 
as an instance of the job grouping problem, for some suitable choice of the 
tool-job incidence matrix and of the capacity. 

Proof: 
Consider an arbitrary instance (SC) of the set covering problem, in the form 
(6.1) - (6.4). We associate with this instance the P X N tool-job matrix A 
defined by 

j = 1, ... , P; i = 1, ... , N, 

and the capacity C P - 1 (we assume without loss of generality that 
Q = (qij) has no zero row, so that A has no column involving C + 1 ones). 
We claim that the set covering formulation of the job grouping instance de
scribed by A and C is exactly (SC). Indeed, a subset S of jobs (S ~ N) is 
feasible for the instances described by (A, C) if and only if there exists a row 
j of A (j E {1, ... , P}) such that aji = 0 for all i E S, or, equivalently, if 
and only if there is a column j of (%) such that % = 1 for all i E S. But 
this also means that the (maximal) columns of (qij) exactly correspond to 
the maximal feasible sets of jobs. 0 

Notice, however, that the value ofthe tool magazine capacity occurring in 
this proof (namely, the total number of tools minus one) is not very realistic 
from the viewpoint of the job grouping problem. From a computational 
complexity viewpoint, Theorem 6.1 may be seen as a proof that the job 
grouping problem is NP-hard (see also Tang and Denardo (1988b)). As 
a matter of fact, we can prove that the problem is NP-hard even when 
C = 3 (transformation from the problem edge partition into triangles; Holyer 
(1981)) and that deciding whether there exists a partition of the jobs into 
two feasible groups ~s NP-complete (this is equivalent to the block folding 
problem discussed in Mohring (1990)). 

6.2.2 Column generation 

To find a lower bound for the set covering problem, we want to solve the 
LP-relaxation of (6.1) - (6.4), i.e. the problem (6.1) - (6.3). We avoid the 



Section 6.2 113 

difficulty of explicitly generating all columns of this problem, by working 
with only a subset of the columns and adding new columns as needed. This 
approach was suggested by Gilmore and Gomory (1961) for solving cutting 
stock problems. It can also be seen as an essential part of the Dantzig
Wolfe decomposition (Dantzig and Wolfe, 1960). For a thorough discussion 
of column generation we point to Chvatal (1983), and we only briefly recall 
here the main features of the approach. At each iteration of the column 
generation procedure, we solve the LP obtained by restricting (6.1) - (6.3) 
to some subset T of columns, i.e. we solve a problem of the form: 

minimize LVj (6.5) 
jeT 

subject to Lq··y· > 1 '3 3 - i=l, ... ,N, (6.6) 
jeT 

Vj 2: 0 JET, (6.7) 

for some T ~ {1, ... , P} (we shall indicate in Section 6.4 how an initial set 
T may be chosen). Let V* be an optimal solution to (6.5) - (6.7) and A* be 
an optimal solution to the dual of (6.5) - (6.7). Consider also the dual of 
(6.1) - (6.3), in the form 

N 

maximize LAi (6.8) 
i=l 
N 

subject to Lq"A' < 1 '3 .- j = 1, ... ,P, (6.9) 
i=l 
Ai 2: 0 i=l, ... ,N. (6.10) 

Observe that V* satisfies the constraints (6.2), (6.3) and that Ef=l vj = 
E~l Ai (we suppose here that vj is extended to a vector of lRP by letting 
vj = 0 for j ~ T). Hence, if A* satisfies all constraints (6.9), it follows 
from the duality theorem of linear programming theory (see Chvatal (1983» 
that V* is an optimal solution to the LP relaxation (6.1) - (6.3). In such a 
case, the column generation procedure does not need to proceed further. On 
the other hand, if A* does not satisfy (6.9), that is if there exists a column 
j E {1, ... , P} such that E~l qijAi > 1, then the current set T can be 
extended by this new index j, and a new iteration of the column generation 
procedure can be started (alternatively, j can be seen as a column with 
negative reduced cost for the relaxation (6.1) - (6.3». Classical LP theory 
ensures again that this procedure can be made to converge in a finite number 
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of iterations. In the next subsection, we discuss the question of finding a 
violated constraint among (6.9). 

6.2.3 The generation subproblem 

The efficiency of column generation procedures is to a large extend deter
mined by the complexity of the so-called generation subproblem, that is, in 
our case of the subproblem: 

N 

given Ar, ... ,AN, is therej E {l, ... ,P} such that L%Ai > 1? 
i=l 

(6.11) 

In many successful applications of column generation, the subproblem is 
relatively easy, e.g. solvable in polynomial or pseudo-polynomial time (see 
e.g. Gilmore and Gomory (1961), Desrosiers, Soumis and Desrochers (1984), 
Ribeiro, Minoux and Penna (1989), ana Minoux (1987) for a general discus
sion). Other applications exist, however, where the subproblem itself turns 
out to be hard (see e.g. Kavvadias and Papadimitriou (1989), Jaumard, 
Hansen and Poggi de Aragao (1991)). In order to determine the complexity 
of our subproblem, notice first that (6.11) can be rephrased as: 

given Ar, ... , AN, is there a feasible group S such that L Ai > 1? (6.12) 
iES 

Now, (6.12) could certainly be answered if we could find a feasible group 
S which maximizes the expression EiES Ai over all feasible groups. We may 
express this reformulation of the subproblem as follows. Introduce variables 

Xi = 1 
=0 

for i = 1, ... , N, and 

Zk = 1 
=0 

if job i is in group S 
otherwise, 

if tool k is required by some job in S, 
otherwise, 

for k = 1, ... , M. The maximization version of (6.12) becorn,es (Hirabayashi 
et al., 1984): 

N 

maximize L Ai Xi 

i=l· 

subject to akixi::; Zk i= 1, ... ,Nik= 1, ... ,M, 

(6.13) 

(6.14) 
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M 

~Zk~C 
k=l 

XiE{O,l} 

ZkE{O,l} 

i= 1, ... ,N, 

k= 1, ... ,M, 

115 

(6.15) 

(6.16) 

(6.17) 

This problem is known to be NP-hard, even when Ai = ... = AN = 1 
(Gallo, Hammer and Simeone, 1980). Notice that, when Ai = ... = AN = 1, 
(6.13) -(6.17) boils down to determining a feasible group that contains as 
many jobs as possible; this subproblem has been considered by Hwang (1986) 
and Hwang and Shogan (1989). Problem (6.13) - (6.17) (and generalizations 
thereof) has been investigated by a number of authors. Hirabayashi et al. 
(1984) developed a branch-and-bound procedure for it. To obtain an up
per bound, they solve the linear relaxation of the problem by a specialized 
primal-dual algorithm. Mamer and Shogan (1987) use a Lagrangian method 
with the help of subgradient optimization to solve the relaxation of (6.13) 
- (6.17). This approach has been developed further by Gallo and Simeone 
(1988) (see also Chaillou, Hansen and Mahieu (1989)). Dietrich, Lee and Lee 
(1991) present a heuristic procedure for the problem (see Section 6.4). They 
also use the LP-relaxation for obtaining an upper bound, and present some 
valid inequalities to improve this bound and to fasten up the branch-and
bound search. From a practical viewpoint, (6.13) - (6.17) remains a hard 
problem to solve. In particular, experimental results of Dietrich et al. (1991) 
show a large gap between the LP-relaxation value and the optimal value of 
(6.13) - (6.17). Our own experience also indicates that the LP-relaxation is 
generally weak. Especially in the case where optimality in the column gen
eration procedure is nearly reached (Le. where the generation subproblem 
has an optimal value close to 1), the gap between LP- and IP-formulation 
is considerable (often larger than 2). This results in large search trees when 
attacking (6.13) - (6.17) by branch-and-bound. Another drawback of solving 
(6.13) - (6.17) to optimality is that this only allows one new column of the 
set covering problem to be generated in each iteration (Le., we find only 
one violated inequality of type (6.9)). This may lead to a large number of 
iterations of the column generation procedure. Because we are using the LP 
package LINDO in our experiments, and this package does not allow to add 
columns to a model in a dynamic fashion, one new LP problem has to be 
reoptimized from scratch in each such iteration, a rather costly operation. In 
view of all these considerations, we decided to use a complete enumeration 
procedure for the solution of the generation subproblem. Thus, in terms of 
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the formulation (6.12), we are not only interested in finding one group S for 
which Eies ~t > 1, but in finding all (or many) such groups. All the cor
responding columns may enter the set covering formulation, and this tends 
to reduce the number of iterations of the column generation procedure. The 
enumeration procedure works as follows. First, we sort the dual variables 
by nonincreasing values, say e.g. ~i ~ ~2 ~ ... ~ ~N' Then we grow a 
binary tree, by successively attempting to include or not to include each of 
the jobs 1,2, ... , N in a feasible group. Early on in the column generation 
procedure, the ~t's are bad estimates of the optimal dual variables, and 
hence the enumeration procedure produces very quickly a large number of 
feasible groups S with Eies ~t > 1. Therefore, the total number of columns 
that is generated in one iteration is limited to a fixed arbitrary number (100 
in our implementation). For the instance sizes which we considered in our 
experiments, the enumeration procedure always remained manageable (see 
Section 6.5). 

6.2.4 Computation of lower bounds via column generation 

The column generation procedure can be summarized as follows (see Section 
6.4 for details about its implementation): 

Initialization: Generate an initial set T of columns of the set covering 
formulation (6.1) - (6.3). 

LP Solution: Solve the LP (6.5)-(6.7); let y* and ~* be optimal primal and 
dual solutions of (6.5)-(6.7). 

Column Generation: Generate new columns by solving the generation 
subproblem: that is, find indices j E {1, ... , P} such that Ef:l %~t > 
1, and let T ~ T U {j} for each such j. H no such new columns can be 
found then STOP: y* is an optimal solution of (6.1) - (6.3); otherwise 
return to LP Solution. 

When the column generation procedure stops we have an optimal solution y* 
for the LP relaxation (6.1) - (6.3). Rounding up the solution value 'EjeTyj 
to the next integer gives a lower bound for the job grouping problem. We 
will refer to the bound rEjeT yjl as LBcG. 

It is also possible to compute weaker lower bounds on the optimal value 
of the job grouping problem before the column generation procedure termi-
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nates. To see this, let Z denote the optimal value of the generation subprob
lem (6.13) - (6.17), as computed for instance in some iteration ofthe column 
generation step (for the results below to be valid, the Ai may actually be 
arbitrary numbers in [0,1], and do not necessarily need to arise from the LP 
solution step). Farley (1990) observed the following: 

Theorem 6.2 If Z ~ 1, then Ef:l Ai /Z is a lower bound on the optimal 
value of {6.1} - {6.3}. 

Proof: 
By definition, Z is the maximum value of Ef:l qijAi over j (see (6.11)). 
Thus, A* /Z is a feasible solution for the dual (6.8) - (6.10) of (6.1) - (6.3), 
and it follows that Ef:l Ai/Z is a valid lower bound for (6.1) - (6.3). 0 

Another lower bound can also be derived_as follows: 

Theorem 6.3 If Z ~ 1, then Ef:l Ai + N· (1- Z) is a lower bound on the 
optimal value of {6.1} - {6.3}. 

Proof: 
Let y* be an optimal solution of (6.1) - (6.3). Notice that Ef:l %yj > 
1 (i = 1, ... , N) and Ef=l yj ~ N. Hence, 

Ef=l yj ~ Ef=l yj + Ef:l (1 - Ef=l %yj)Ai 
= Ef:l Ai + Ef=l(l- Ef:l %Ai)yj 
~ Ef:l Ai + (1 - Z) Ef=l yj 
~ Ef:l Ai + N(l - Z). 0 

Theorem 6.4 If Z > 1, then Ef:l Ai /Z > Ef:l Ai + N . (1- Z). 

Proof: 
Trivial. o 

Theorem 6.4 shows that the bound given in Theorem 6.3 is strictly better 
than the bound in Theorem 6.2 whenever Z > 1. When Z = 1, both bounds 
coincide with the optimal value of (6.1) - (6.3). Thus, we will only consider 
from now on the stronger bound Ef:l Ai / Z. More precisely, we define 

LBFarley = 1Lf:1 Ai / Z] 
LBFarley is obviously a valid lower bound on the optimal value of the job 
grouping problem. As the column generation proceeds, Z approaches 1 and 
LBFarley approaches the lower bound LBcG (see Farley (1990)). 
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6.2.5 Lagrangian relaxation 

In this subsection, we present an alternative integer programming model for 
the job grouping problem and we discuss the quality of the bounds that it 
yields, either by continuous relaxation or by Lagrangian relaxation. In this 
model, a variable Xij is used to denote the assignment of job i to one of N 
groups, indexed by j (i = 1, ... , N j j = 1, ... , N) (one may best think of the 
N groups as being initially empty). We use the following notation 

Xij = 1 
=0 

Yj = 1 
=0 

Zkj = 1 
=0 

if job i is assigned to group j, 
otherwise, 
if groupj is non-empty, 

otherwise, 
if tool k is used for the production of group j, 

otherwise, 

for i = 1, ... ,N,j = 1, ... ,N,k = 1, ... ,M. 
The model is now: 

N 

minimize L Yj 
j=1 

N 

subjeCt to L Xij = 1 
j=1 

i=l, ... ,N, 

(6.18) 

(6.19) 

akiXij ~ Zkj 
M 

i= 1, ... ,Njj= 1, ... ,Njk= 1, ... ,M{6.20) 

LZkj ~ CYj 
k=1 

Yj E {0,1} 
Xij E {0,1} 
Zkj E {0,1} 

j=l, ... ,N, 

j=l, ... ,N, 

i = 1, .. . ,Njj = 1, ... ,N, 

j = 1, ... ,Njk = 1, ... ,M. 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

The objective function (6.18) minimizes the number of non empty groups. 
Restrictions (6.19) make sure that each job is assigned to some group. Re
strictions (6.20) assure that the tools needed for a job are available for the 
produCtion of the group to which the job is assigned. Restrictions (6.21) 
describe the tool magazine capacity constraints for each group. The con
tinuous relaxation of this model yields a weak lower bound on the opti
mal value. Indeed, the solution Xij = l/N,Zkj = l/N and Yj = M/CN, 
(i = 1, ... , Njj = 1, ... ,Nj k = 1, .. . ,M) is feasible, with an objective 
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function value of MIG (which is trivially a valid lower bound; see Section 
6.2.6). Lagrangian relaxation could be used to compute a stronger bound. 
For instance, if we dualize restrictions (6.19) with multipliers Ai, ... , AN' we 
obtain a lower bound LBlr(A) by solving: 

N N N 
LBLR(A) = minimize LYj + L Ai(l- LXij) (6.25) 

j=l i=l j=l 

subject to (6.20) - (6.24). 

Up to deletion of an additive constant, Ef:l Ai, this problem can be 
equivalently rewritten as 

N N 
minimize L(Yj - L AiXij) (6.26) 

j=l i=l 

subject to (6.20) - (6.24). 

Now problem (6.26), (6.20) - (6.24) can be decomposed into N identical 
subproblems, one for each value of j = 1, ... , N. Deleting the index j, the 
generic form of each subproblem is: 

N 

minimize Y - L AiXi 
i=l 

subject to akixi:::; Zk 

M 

LZk:::; G·y 
k=l 

yE{O,l} 

Xi E {0,1} 

zk E {0,1} 

i = 1, .. . ,N;k = 1, .. . ,M, 

i = 1, .. . ,N, 
k = 1, ... ,M. 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

If Y = 0 in the optimal solution of (6.27) - (6.32), then also Zk = 0 
for k = 1, .. . ,M,Xi = 0 for i = 1, .. . ,N, and the optimal value is O. If 
Y = 1 at optimality, then minimizing the objective function (6.27) becomes 
equivalent to maximizip.g Ef:l AiXi. Therefore, we conclude tha~ the sub
problem arising via this Lagrangian relaxation is essentially equivalent to 
the subproblem (6.13)- (6.17) arising via column generation. Denote by Z, 
as usual, the maximum of Ef:l AiXi under the constraints (6.28) - (6.32). 
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The previous discussion shows that the optimal value of (6.27) - (6.32) is 
equal to min(O, 1- Z). This in turn implies that the lower bounds LBLR(A), 
corp.puted from (6.25), (6.20) - (6.24), is equal to L:f:l Ai + N· min (0,1- Z). 
As we already know, this bound is weaker than LBFarley for all A such that 
Z > 1 (see Theorem 6.4), and coincides with the optimal value of (6.1) - (6.3) 
when Z ::; 1. Thus, the Lagrangian "relaxation approach described here does 
not yield better bounds than the column generation procedure. Observe 
that a "best possible" choice of the multipliers At, ... , AN, i.e. one leading 
to the maximum value of LBLR(A), could be searched for by a subgradient 
optimization procedure (Fisher, 1981) or by a multiplier adjustment proce
dure (Fisher, Jaikumar and Van Wassenhove, 1986). The column generation 
procedure can also be seen as using an LP-solver to adjust the values of the 
multipliers. The Lagrangian relaxation approach will not be considered any 
further in this work. 

6.2.6 Other lower bounds 

We discuss in this subsection some more lower bounds for the job grouping 
problem. By duality, the optimal value of the problem (6.8) - (6.10) is equal 
to the optimal value of (6.1) - (6.3), i.e. (up to rounding) LBcG. Thus, the 
optimal value of (6.8) - (6.10) under the additional restriction 

Ai E {0,1} i = 1, ... ,N, (6.33) 

is a lower bound on LBcGi we denote it by LBsp. This lower bound can 
be interpreted as follows. Call two jobs compatible if they form a feasible 
group and incompatible otherwise. Then, LBsp is nothing but the maximum 
number of pairwise incompatible jobs. The problem (6.8) - (6.10), (6.33) is a 
so-called set packing problem. Conversely, a construction similar to the one 
used for Theorem 6.1 shows that any instance of the set packing problem 
can arise in that way. It follows from this observation that computing LBsp 
is NP-hard (see e.g. Nemhauser and Wolsey (1988) p. 117). 

Tang and Denardo (1988b) propose a lower bound which is also based on 
the concept of compatibility of jobs. In their so-called sweeping procedure, 
they sequentially create a number of groups as follows. In each step of 
the procedure, they first select a job (seed) which is compatible with the 
fewest number of other (not yet selected) jobs (in case of a tie, the job for 
which the set of compatible jobs requires the smallest number of tools is 
selected). Next, the seed, along with all jobs which are compatible with it, 
are selected to form one group. The procedure is repeated until all jobs have 
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been selected. The number of groups so created, say L (i.e., the number of 
steps of the sweeping procedure) is a valid lower bound for the job grouping 
problem. In fact, L can best be seen as a lower bound on LBsp, since the 
seeds are mutually incompatible, and hence define a feasible solution of the 
set packing problem (6.8) -(6.10), (6.33). From this viewpoint, the sweeping 
procedure is a greedy heuristic applied to (6.8) -(6.10), (6.33). 

Tang and Denardo (1988b) also point to the lower bound rM/Cl. Com
bining this bound with L yields the lower bound LBsw = max {fM/Cl,L} 
(Tang and Denardo, 1988b). 

The lower bound LBsw can be further improved by "incorporating" the 
lower bound rM/Cl, in the sweeping procedure. More precisely, a lower 
bound for the job grouping problem can be calculated in each step of the 
sweeping procedure by summing the number of already created groups by 
the sweeping procedure and the lower bound n UieI Til/Cl , where I is 
the set of "not yet selected" jobs, and Ti is the set of tools needed by job 
i. This procedure generates a sequence of valid lower bounds, the first of 
which is equal to rM/Cl, and the last of which is equal to L. We refer 
to this procedure as the "modified sweeping procedure". It yields a new 
lower bound, equal to the maximum of the bounds in the sequence, which 
we denote by LBMSW. 

We have considered a number oflower bounds for the job grouping prob
lem. Summarizing we have: 

• LBFarley ~ LBcG (see Section 6.2.4) 

• LBLR ~ LBFarley (see Section 6.2.5) 

• LBsp ~ LBcG (Duality) 

• LBsw ~ LBMSW (see this section) 

In our implementation we use the bound LBMSW for its computational 
simplicity and the lower bounds LBFarley and LBcG if LBMSW is not strong 
enough. 

6.3 Upper bounds 

In this section a number of heuristic methods will be described to compute 
good solutions for the job grouping problem and hence upper bounds on its 
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optimal value. First, we will describe a number of procedures that sequen
tially build groups. The second part will discuss procedures based on solving 
the set covering formulation. 

6.S.1 Sequential heuristics for grouping 

Sequential heuristic procedures use a two-step approach for building each 
group. In the first step, ajob is picked to be used as a seed. Unless explained 
otherwise, we always pick a job that requires the highest number of tools. 
Then a selection rule is used to add jobs to the group until the tool magazine 
capacity constraint prohibits the addition of any other job to this group. The 
two-step procedure is repeated until all jobs are assigned to some group. For 
selecting the next job to be assigned to a group (in step 2) a number of 
different rules have been considered. We now describe them. For a group S 
and a job i ~ S, let 
ti = number of tools required by job ij 
bi = number of tools required both by job i and by some job already in S. 

1. MIMU rule 
Tang and Denardo (1988b) select the job that has the largest number 
of tools in common with the jobs already in the group. In case of a 
tie, the job which requires the smallest number of additional tools is 
selected. The procedure is called Maximal Intersection Minimal Union. 
(Maximize bi j in case of a tie minimize ti) 

2. MI rule 
This is the rule obtained if only the first part of the MIMU rule is used, 
and ties are arbitrarily broken. (Maximize bi) 

3. MU rule 
It is also possible to select jobs according only to the Minimal Union 
criterion: select the job that requires a minimum number of additional 
tools. (Minimize (ti - bi)) 

4. Whitney and Gaul rule 
Whitney and Gaul (1985) favour jobs that bring with, them a large 
number of versatile tools. This idea is operationalized by selecting 
a job for which the ratio (bi + l)/(ti + 1) is maximal. (Maximize 
(bi + l)/(ti + 1)) 
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5. Rajaflopalan rule 
Rajagopalan (1985) proposes a number of procedures based on the 
First Fit Decreasing rule for bin-packing. Among these, we consider 
one that first assigns weights to the tools and then selects the job that 
requires the most 'expensive' tools. More precisely, each tool k receives 
a weight ak equal to the number of jobs that require tool k among the 
jobs that still have to be assigned to a group. Then, the priority of job 
i is calculated by summing the weights ak of the tools that must be 
added to the tool magazine in case job i is assigned to the group. The 
job with the largest priority is selected first. For this rule, the first job 
in each group (seed) is also selected according to the same criterion. 

6. Modified Rajagopalan rule 
The procedure of Rajagopalan (1985) can be changed in the following 
way: the weight ak for each tool k is defined as the number of jobs 
that require tool k among the jobs already selected in the group. The 
priority of a job is the sum of the weights of the tools that are needed 
for that job. The job with the highest priority is selected. 

7. Marginal gain rule 
The addition of job i to a group usually requires that extra tools be 
loaded in the tool magazine. This new tool configuration may in turn 
allow the execution of other, not yet selected, jobs; denote by Pi the 
number of such jobs. This rule selects a job i that maximizes Pi (a 
similar idea is used by Dietrich et al. (1991)). 

6.3.2 Set covering heuristics 

In the course of the column generation procedure, several set covering sub
problems of type (6.5) - (6.7) are formulated. Each such subproblem can 
be viewed as an approximation of the complete formulation (6.1) - (6.4). 
In particular, each feasible solution ofthe system (6.6) - (6.7) is a feasible 
solution of (6.2) - (6.3), and hence each 0-1 solution of (6.6) - (6.7) defines 
a heuristic solution to the job grouping problem. We have used this obser
vation in various ways. First, the solution of (6.5) - (6.7) found by LINDO 
during the column generation procedure sometimes happens to be a 0-1 so
lution which improves upon the current best solution. Such solutions can be 
detected with very little additional computational effort and may avoid the 
use of other upper bounding procedures. 
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It is also possible to systematically generate "good" 0-1 solutions of the 
subproblem (6.5) - (6.7). This can be done using either a heuristic procedure 
or an exact algorithm. We have considered both possibilities. As a heuristic, 
we used the well-known greedy procedure (Nemhauser and Wolsey, 1988 p. 
466); this constructive heuristic recursively selects as next group (column) 
one which contains a maximum number of jobs, until all jobs are included 
in some group (i.e. are covered by some column). Alternatively, subproblem 
(6.5) - (6.7) could also be solved to optimality in 0-1 variables, by relying 
on the capability of LINDO to handle integer programming problems. In 
view of the computational burden involved in this approach, we chose to 
turn it into a heuristic by requiring only a small number of variables to 
be integer. We only used this heuristic when the column generation proce
dure ended without an optimal solution. We will explain in Section 6.4 the 
implementational details of this approach. 

6.4 Implementation 

In Sections 6.2 and 6.3, an overview has been given of the methods that can 
be used for obtaining lower bounds and upper bounds for the job grouping 
problem. Also, the general principle of the column generation procedure and 
the difficulty of solving the generation problem have been discussed. Now, 
we focus on implementational issues. The procedure that we implemented 
consists of four main steps. We first briefly sketch the whole procedure before 
commenting on each individual step. 

Step I: Use the heuristics of Section 6.3.1. to produce a first upper bound. 
Compute the simple lower bounds LBsw and LBMSW. IT optimality 
is achieved then STOP. Otherwise construct an initial set covering for
mulation using the groups that have been generated using the heuristic 
procedures. 

Step II: Use the greedy heuristic to solve the initial set covering formula
tion. IT optimality is achieved then STOP. Otherwise use a heuristic 
to add a number of columns to the initial formulation. Solve again 
the resulting set covering formulation using the greedy procedure. IT 
optimality is achieved then STOP. 

Step III: Solve the LP-relaxation of the current formulation. Check whether 
the primal solution is integral and whether its value improves the cur
rent upper bound. Use the dual variables to formulate the generation 
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subproblem and generate new columns with negative reduced cost. 
Calculate LBFarley. IT optimality is achieved then STOP. IT no columns 
with negative reduced cost have been found, then continue with Step 
IV. Otherwise, update the set covering formulation and repeat Step 
III. 

Step IV: Use the last set covering formulation for finding an improved 
heuristic solution. 

In Step I an upper bound is obtained by using the 7 heuristics of Section 
6.3.1 and retaining the best solution. A lower bound is obtained by calcu
lating the bounds LBsw and LBMSW of Section 6.2.6. IT the lower bound 
equals the upper bound, the procedure stops and steps II-IV are not neces
sary. Otherwise the groups generated by the heuristics are used to generate 
an initial set covering formulation of the problem. 

Step II aims at improving the initial formulation and the current up
per bound before starting the column generation procedure. The first set 
covering formulation is solved using the greedy heuristic (Section 6.3.2.). 
IT optimality is not established yet, then a heuristic based on the work of 
Dietrich et al. (1991) is used for generating additional columns as follows. 
Each job is considered as a seed, around which a group is built by iteratively 
adding that job i for which the ratio Pi/(ti - bi) is maximal, where (ti - bi) 
is the number of additional tools needed for job i and Pi is the number of 
additional jobs that may be executed with the new set of tools in the tool 
magazine (see Section 6.3.1). In this way N (number of jobs) new groups (Le. 
columns) are constructed and used to extend the set covering formulation. 
This new formulation is solved again using the greedy heuristic. Notice that 
the second part of Step II is time consuming (see Section 6.5.2); this is the 
main reason why we first apply the greedy heuristic to the initial formulation 
rather than directly extending this formulation. 

The third step is critical to the procedure. First, the LP-relaxation of 
the current set covering formulation is solved using the linear programming 
package LINDO. The primal and dual solutions are stored, and the primal 
solution is checked for integrality. IT it is integral and involves fewer groups 
than the current best solution, then its value is stored as a new upper bound. 
The dual variables are then used in the generation subproblem. This problem 
is solved using the enumeration strategy described in Section 6.2 .. 3. In the 
first steps of the column generation procedure only a limited enumeration 
takes place because of (the self-imposed) maximum of 100 columns that may 
be generated by the enumeration procedure. When a complete enumeration 
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is performed, the optimal value Z of the generation subproblem is used for 
computing the bound LBFarley. H this lower bound is equal to the upper 
bound the procedure stops. H no new column has been generated (Le. Z = 1 
and LBFarley = LBcG), then the column generation subroutine terminates, 
and we continue with step IV. Otherwise, the new columns are added to 
the set covering formulation. Also, to limit the size of the formulation, all 
columns with a small reduced cost are eliminated. More precisely, columns 
for which z:f:1 %Ai < 1 - a are removed from the formulation, where a is 
an arbitrary chosen parameter (a = 0.25 in our implementation). This may 
cause the procedure to cycle, as columns are removed from the formulation, 
then enter it again, etc. In our tests (with a = 0.25) cycling occurred for 
4 instances out of 550, but could be avoided when the procedure was run 
anew with a set to a larger value. 

When there is still a gap between the upper and lower bound generated 
in Steps I-III, more work has to be done. A branch-and- bound procedure 
could be used to establish optimality. However, it is also possible to use the 
last set covering formulation to improve the upper bound, as we explained 
in Section 6.3.2. In our implementation, we first solve this formulation by 
the greedy heuristic. H this is not effective, we solve a slightly modified 
set covering formulation with LINDO, requiring only a limited number of 
variables to take 0-1 values. More precisely, the T variables which assume 
the largest value in the continuous solution of the set covering formulation 
(where columns for which z:f:1 %Ai < 1 - f3 are removed to limit the size 
of the formulation, with f3 = 0.10), extended by the additional constraint 
z:f=l Yj 2: LBcG, are forced to be integer. The parameter T is taken equal 
to LBcG + 5 if the number of columns is smaller than 50 (resp. LBcG + 15 
if the number of columns is between 50 and 150, and LIJcG + 25 otherwise). 
Because of the small number of integer variables, the resulting mixed 0-1 
problem is easily solved by branch-and-bound. 

Notice that the choices made for the various parameters of the procedure 
(maximum number of columns generated in each iteration, a, T, f3) influence 
the sequence of LP subproblems generated, and hence also the heuristic solu
tions produced in Steps III and IV. These choices may sometimes determine 
whether an optimal solution is found or not by the procedure. 

At the end of the procedure, a lower bound and an upper bound have 
been obtained. In the next section, we discuss our .computational experi
ments with this procedure, and we show that both bounds often coincide 
(and hence, are optimal). 
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6.5 Computational experiments 

6.5.1 Generation of problem instances 

We generated three sets of random instances. The first set contains 120 
instances, the second set 400 instances and the third set 30 instances. Each 
instance falls into an instance type, characterized by the size (M, N) of the 
tool-job matrix and the value C of the capacity. Accordingly, we denote the 
type of an instance by a triple (M, N, C). The first set of instances contains 
12 instance types obtained by combining each of the matrix sizes (20,15), 
(40,30) or (60,40) with four different capacity values Cl,C2 ,C3 ,C4 , as indi
cated in Table 6.1. For each size (M, N), we also define a pair (Min,Max) 
of parameters with the following interpretation: 
- Min = lower bound on the number of tools per job, 
- Max = upper bound on the number of tools per job. 

The second set of instances was created according to rules suggested by 
Tang and Denardo (1988b) in order to allow some comparison with the re
sults of these authors. It involves four instance types, defined by the values 
of the parameters displayed in Table 6.2. 

Problem size Ct C2 C3 C4 Min Max 
MxN 
20 X 15 6 8 10 12 2 6 
40 X 30 15 17 20 25 5 15 
60 X 40 20 22 25 30 7 20 

Table 6.1 Parameters first set of instances 

Problem size Ct Min Max 
MxN 
10 X 10 4 1 3 
15 X 20 8 1 7 
20 X 30 10 1 9 
25 X 30 10 1 9 

Table 6.2 Parameters second set of instances 

For each problem size (M, N) in the first (resp. second) set, 10 (resp. 100) 
random matrices A were generated. For each j = 1, ... , N, the j-th column 



128 Chapter 6 

of A was generated as follows. First, an integer tj was drawn from the uni
form distribution over [Min,Max]: this number denotes the number of tools 
needed for job j, i.e. the number of l's in the j-th column of A. Next, a 
set Tj of tj distinct integers were drawn from the uniform distribution over 
[l,M]: these integers denote the tools required by job j, i.e. akj = 1 if and 
only if k E Tj. Finally, we checked whether Tj ~ Ti or Ti ~ Tj held for 
any i < j. IT any of these inclusions was found to hold, then the previous 
choice of Tj was cancelled, and a new set Tj was generated (as observed by 
Tang and Denardo (1988b) the job grouping problem trivially simplifies by 
removal of the columns included in other columns of the tool-job matrix). A 
problem instance of type (M, N, C) is now obtained by combining an M X N 
tool-job matrix A with one of the corresponding capacities displayed in Ta
bles 6.1 and 6.2. The random instances described above are similar to those 
generated e.g. by Rajagopalan (1985), Tang and Denardo (1988b), Hwang 
and Shogan (1989) and Kuhn (1990). It turns out that, for these instances, 
the feasible groups of jobs are usually rather small (typically, 2 to 5 jobs). 
This can be explained by the fact that the tool requirements of the jobs 
are completely independent of each other, and that large subsets of jobs 
are therefore uiilikely to be compatible. This lack of interdependence be
tween jobs is, however, unlikely to reflect the structure of "realistic" tool-job 
matrices. Indeed, real-world instances are more likely to exhibit subsets of 
"similar" jobs, characterized by "similar" tool requirements. Our third set 
of random instances results from an attempt to capture this type of features. 
The parameters for this set are displayed in Table 6.3. 

Problem size C Min Max Minjob Maxjob 
MxN 
40 X 40 20 7 10 5 8 
50 X 50 25 8 12 6 10 
60 X 60 30 10 15 8 12 

Table 6.3 Parameters third set of instances 

Ten instances of each type (M, N, C) were generated as follows. First, a 
number Nl is drawn uniformly between Minjob and Maxjob, and a subset 
of tools Ml of size exactly C is randomly chosen. Then, we create Nl 
"similar" jobs, by making sure that these jobs use only the tools in Ml 
(and hence, form a feasible group). These jobs are generated as explained 
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before for the first and the second sets of instances (except that they are 
restricted to the tools in MI). When Nl jobs have been defined, then the 
procedure is iterated to produce N2 , N3 , ••• additional jobs. This process 
stops after k iterations, when almost all columns of the incidence matrix 
have been generated (specifically, when L:f=l Ni ~ N -Maxjob). Then, the 
last columns are filled independently of each other, as for the first two sets 
of instances. 

This completes the description of our problem instances. It will be ob
served in the next· section that the degree of difficulty of these instances is 
somewhat related to the relative size of the capacity with respect to the 
maximum number of tools used by the jobs (viz. the parameter Max). We 
call sparse those problem instances for which Max / C is small, and dense 
those for which the ratio is close to 1. Notice, in particular, that all instances 
of type (M, N, C l ) are dense, and that the instances of type (M, N, C4 ), as 
well as the instances in the third set, are rather sparse. 

6.5.2 Computational results 

The column generation procedure has been implemented as described in Sec
tion 6.4, using Turbo Pascal, and tested on the instances described in Section 
6.5.1. The experiments were run on an AT personal computer with 16 MHz 
80386sx processor and 80387 mathematical coprocessor. No systematic at
tempts have been made to optimize the running times of the codes, because 
our primary goal was to establish the quality of the bounds computed. 

Before going into detailed comments, we mention what we see as our two 
most interesting results. First, for all instances tested, the gap between the 
LP -relaxation of the set covering formulation and the value of the optimal 
solution was smaller than 1. In other words the column generation procedure 
always provided a lower bound LBcG equal to the optimal value of the job 
grouping problem (note, however, that this empirical observation is definitely 
not a theorem: indeed, it follows from Theorem 6.1 that LBcG can, for 
some possibly contrived examples, be arbitrarily far from the optimal value). 
Second, using the column generation procedure described in Section 6.4.1 
we were able to solve 541 of our 550 instances to optimality. Moreover, all 
instances have been solved to optimality by variants of the same procedure, 
characterized by different choices of the parameters (number of new: columns 
generated in each iteration, value of the reduced costs under which columns 
are deleted, etc.). 
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Lowerbounds 
Instance type 

OPT LBsw LBMSW LBcG 
MxN C 1 2 3 4 

20 x)5 6 9.3 -0.5 '(5) -0.4 (6) 0(10) 
8 5.7 -1.2 (1) -1.2 (1) 0(10) 
10 3.9 -1.9 (0) -1.8 (0) 0(10) 
12 2.9 -0.9 (1) -0.9 (1) 0(10) 

40 X 30 15 19.0 -0.7 (5) -0.3 (7) 0(10) 
17 15.5 -0.7 (5) -0.7 (5) . 0 (10) 
20 10.9 -2.1 (0) -2.0 (1) 0(10) 
25 6.7 -4:7 (0) -4.3 (0) 0(10) 

60 x 40 20 25.9 -0.8 (5) -0.6 (7) 0(10) 
22 22.3 -8.6 (2) -8.6 (2) 0(10) 
25 17.0 -9.6 (0) -9.6 (0) 0(10) 
30 12.0 -7.0 (0) -6.9 (0) 0(10) 

10 x 10 4 5.1 -0.7 (38) -0.5 (54) 0(100) 
15 x 20 8 9.3 -0.7 (45) -0.5 (57) 0(100) 
25 x 30 10 15.0 -0.7 (47) -0.5 (62) 0(100) 
20 x 30 10 14.0 -0.8 (39) -0;6 (45) 0(100) 
40 x 40 20 6.2 -4.2 (0) -4.2 (0) 0(10) 
50 x 50 25 6.3 -4.3 (0) -4.3 (0) 0(10) 
60 x 60 30 7.7 -5.7 (0) -5.7 (0) 0(10) 

Table 6.4 Quality of lower bounds 
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Upper bounds 

Instance type OPT MIMU MI MU Whit. Rajago- Mod. Marg. Best 
+ Gaul palan Raj. gain 

MxN I C 1 2 3 4 5 6 7 8 9 

20 X 15 6 9.3 0.3 ll~) 0.3 (~~) 0.4 (9~ 0.3l~~) 1.1 ~3~ 0.3 ~10~ 0.5 ~8~ 0.3 ~7~ 
8 5.7 0.4 (7) 0.2 (9) 0.7 (4) 0.5 (6) 0.8 (4) 0.1 (10) 0.6 (5) 0.1 (9) 
10 3.9 0.4 (7) 0.4 (7) 0.6 (5) 0.4 (7) 1.0 (2) 0.4 (7) 0.6 (5) 0.1 (9) 
12 2.9 0.2 (9) 0.3 (8) 0.6 (5) 0.3 (8) 0.9 (3) 0.3 (8) 0.5 (6) 0.1 (9) 

40 X 30 15 19.0 0.3 (7) 0.0 (10) 0.6 (5) 0.2 (8) 0.8 (3) 0.0 (10) 0.3 (7) 0.0 (10) 
17 15.5 0.3 (8) 0.2 (9) 0.6 (5) 0.2 (9) 1.1 (1) 0.1 (10) 0.6 (5) 0.1 (9) 
20 10.9 0.9 (7) 0.6 (10) 1.6 (2) 1.0 (6) 2.4 (0) 0.6 (10) 1.4 (3) 0.6 (4) 
25 6.7 0.9 (10) 0.9 (10) 1.9 (0) 1.0 (9) 3.0 (0) 0.9 (10) 2.0 (1) 0.9 (1) 

60 X 40 20 25.9 0.5 (8) 0.3 (10! 0.6 ~7! 0.4 (9) 0.9 ~4! 0.3 ~10! 0.6 (7) 0.3F! 
22 22.3 0.6 (5) 0.1 (10) 1.0 (3) 0.5 (6) 1.4 (0) 0.1 (10) 0.7 (5) 0.1 (9) 
25 17.0 1.5 (3) 0.8 (9) 2.5 (0) 1.6 (1) 2.3 (0) 0.7 (10) 1.9 (0) 0.7 (3) 
30 12.0 1.3 (6) 0.9 (10) 2.8 (0) 1.3 (6) 3.9 (0) 1.0 (9) 3.2 (0) 0.9 (1) 

10 X 10 4 5.1 0.2 (95) 0.2 (95) 0.5 (62) 0.2 (95) 0.6 (58) 0.2 (95) 0.5 (65) 0.1 (87) 
15 X 20 8 9.3 0.4 (88) 0.4 (90) 0.7 (65) 0.5 (83) 1.2 (31) 0.4 (89) 0.8 (59) 0.3 (68) 
25 X 30 10 15.0 0.5 (79) 0.4 (90) 0.9 (43) 0.5 (73) 1.5 (11) 0.4 (90) 0.8 (50) 0.3 (75) 

0.4 (92) 1.3 (26) 0.6 (73) 1.7 (15) 0.4 (91) 1.1 (33) 0.3 (66) 20 X 30 10 14.0 0.5 (81) 

40 X 40 20 6.2 1.0 (6) 0.8 (8) 0.8 (8) 1.0 (6) 5.9 (0) 1.1 (6) 1.4 (3) 
50 X 50 25 6.3 1.5 (2) 1.1 (6) 1.3 (6) 0.9(6) 10.3 (0) 1.~ (4) 3.9 (1) 
60 X 60 30 7.7 1.5 (6) 0.7 (9) 1.5 (4) 1.6 (4) 12.2 (0) 1.1 (6) 3.6 (3) 

Table 6.5 Quality of upper bounds 

The quality of the lower bounds LBsw, LBMSW, LBcG is depicted 
in Table 6.4. Table 6.5 compares the solutions obtained by the sequential 
heuristics in step I of the procedure. The column labelled OPT in both tables 
gives the average number of groups in the optimal solution, per instance type. 
The next three columns in Table 6.4 bear on the lower bounds; columns 2-8 in 
Table 6.5 correspond to the upper bounds delivered by the seven sequential 
heuristics, and the last column (labelled Best) reports on the upper bound 
obtained by retaining the smallest of the previous seven ones. Each entry 
in columns 2-4 in Table 6.4 and 2-9 in Table 6.5 has the format t5(a). In a 
row labelled (M,N,C) and a column labelled X, 15 is the average difference 
between the lower (or upper) bound X and the optimal value of the instance, 
over all instances of type (M,N,C); that is, 15 = X- OPT, where X is the 
average of the lower (or upper) bound X. In columns 2-8 in Table 6.5 (that 
is, for the sequential heuristics), the entry a denotes the number of instances 
of type (M, N, C) for which the upper bound X is best among the sequential 
heuristics. In the columns 2-4 in Table 6.4 and in column 9 in Table 6.5, a 

0.6 (4) 
0.5 (5) 
0.6 (5) 
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is the number of instances for which X is equal to the optimal value of the 
instance. 

As mentioned before, LBcG is equal to the optimal value for all instances 
tested. The lower bounds LBsw and LBMSW are often not sufficiently sharp 
to prove optimality. For only 35 % of the instances (especially smaller, denser 
instances), LBsw gives an optimal lower bound. For an additional 10 % of 
the instances, LBMSW is optimal. But even LBMSW is only optimal for 
2 out of the 90 sparse instances of type (M, N, C3 ) or (M, N, C4 ). This 
bad behaviour of LBsw and LBMSW on sparse instances is intuitively easy 
to understand. Indeed, as capacity increases, each pair of jobs becomes 
more and more likely to be compatible; hence, the sweeping procedure tends 
to become useless, as only small sets of pairwise incompatible jobs can be 
produced (notice that the same conclusion applies for the set packing lower 
bound LBsp - see Section 6.3.2). Tang and Denardo (1988b) recognized this 
weakness of the sweeping procedure, and proposed the lower bound M / C 
with the hope to partially palliate it. But the latter bound is usually weak 
too. 

As far as the sequential heuristics go, it appears from columns 2 to 8 in 
Table 6.5 that the MIMU, MI, Whitney and Gaul and Modified Rajagopalan 
rules outperform the other rules. In particular, the MI rule performs ex
tremely well for all instance types, whereas the Modified Rajagopalan rule is 
especially well suited for the first two sets of instances, but is slightly weaker 
for the third set. In some instances, the Whitney and Gaul or the MIMU 
rule provide an optimal solution where the other procedures leave a gap. 
The MU rule is not very effective for the first two sets of instances (which 
may help explain why MI performs better than MIMU), but is better for 
the third set (it is intuitively easy to understand that, for the instances in 
the latter set, the Minimal Union rule tends to preserve the feasible groups 
which have been artificially built into the instance). The performance of the 
Marginal gain and the Rajagopalan rule is very weak, especially for large, 
sparse instances. 

The best upper bound (Column 9) is optimal or within one unit of op
timality for nearly all instances, which explains that the average deviation 
from the optimal value is smaller than 1 for all instance types. For large, 
sparse instances, a gap often remains. Notice however that the "structured" 
instances in the third set (though very sparse) behave better with this respect 
than other sparse instances of type (40,30,25) or (60,40,30). It seems that, 
for the latter instances, the built-in structure helps in finding an optimal 
solution (see also the comments on Table 6.6 hereunder). 
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Instance type Step I Step II Step III Step III Step IV 
MxN C CG IP 

, 20 x 15 6 6 + 2 2 
8 9 1 
10 9 1 
12 1 8 1 

40 x 30 15 7 3 
17 5 4 1 
20 4 2 4 
25 1 1 7 (1) 

60 x 40 20 7 2 1 
22 2 7 1 
25 3 4 3 
30 1 9 

10 x 10 4 44 1 43 9(2) 1 
15 x 20 8 43 1++ 27 19 7 (3) 
25 x 30 10 46 29 20 4 (1) 
20 x 30 10 27 38 (1) 29 5 

40 x 40 20 4 4 2 
50 x 50 25 ++ 6 (1) 3 
60 x 60 30 + 6 4 

All mstances II 188 I 2 (+6) I 204 (2) II 103 (2) 44 (5) II 

Table 6.6 Performance of different steps column generation 
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Table 6.6 summarizes the results obtained by the complete procedure 
described in Section 6.4. We concentrate on the moments at which optimality 
is established; that is, Table 6.6 gives, for each instance type, the number 
of instances solved in each step of the procedure (the numbers in brackets 
refer to 4 instances for which LBcG could not be computed exactly because 
cycling occurred in Step III, and to 5 instances fqr which no optimal solution 
had been found by the heuristics after completion of Step IV - see Section 
6.4; all these instances were ultimately solved to optimality by a variant of 
the procedure using different parameter settings). Zero values are omitted 
from the table to improve readability. 

Thus, for instance, the column labelled "Step I" displays the number 
of instances for which optimality is achieved in Step I of the procedure : 
these are the instances for which the lower bound LBMSW is equal to Best, 
viz. the best sequential heuristic value. The instances for which LBMSW 
is optimal and Step II produces an optimal solution are recorded in column 
"Step II" (a "+" in this column denotes an instance where LBMSW is not 
optimal, but Step II produces an optimal solution). If optimality is not 
established in either Step I or Step II, the column generation process starts. 
Column "Step III-CG" records the number of instances for which the column 
generation procedure provides a lower bound (LBFarley or LBcG) equal to 
the best upper bound obtained in Steps I and II. Those instances for which 
an optimal 0-1 solution is found in the course of solving the set covering 
LP-relaxation are accounted for in column "Step III-IP". After Step III, 
instances remain for which the lower bound LBcG is smaller than the best 
available upper bound. Column "Step IV" shows the number of instances for 
which solving the set covering formulation with a limited number of integer 
variables was enough to produce an optimal solution with value equal to 
LBcG. 

For 188 out of 550 instances (34 %), optimality is achieved in Step 1. 
All these are dense instances (of type (M,N,Cd or (M,N,C2 )), with the 
exception of one small (20,15,12) instance. This comes as no surprise: as 
discussed before, both the lower bound LBMSW and the best upper bound 
tend to deteriorate when sparsity increases (see Table 6.5). 

The upper bound computed in Step II is used to prove optimality for 8 
instances only. Thus, this step does not seem very useful as far as finding 
good solutions goes. One should however bear in mind that the additional 
columns produced in this step may improve the quality of the initial set cov
ering model, and thus reduce the number of subsequent column generation 
steps. More on this topic below. 
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(.omputa.tlon tIme In seeonds 
Instance type H.euns1ilc8 '''.p. 1-1 V Slep 1-1' "" llerallons "" columns fI';, maXImal 

aJ1 aJ1 col. gen. col. gen. col. gen. feasible columns 
instances instances instances instances instances all instances 

MXN 1 2 3 4 5 6 

20 X 15 6 2.~ S2.5,2.!~ 1~ \2.5,4~~ 2~ p5,4~~ 4.0 2,!~ 23 S20,2~ 33 ,~18,61), 
8 2.3 (2.3,2.4) 26 (10,40) 26 (10'4i~ 3.5 l'i~ 29 (23'4!~ 89 (51,138) 

10 2.~ ~2.1,2.:~ 27,?2,3,61 2~ ~~2,36 3.0 1,5 41, t19,77 189, W6,28:~ 
12 2.1 2.0,2.3 30 2,51 33 14,51 3.7 1,8 43 23,74 327 238,514 

40 X 30 15 1 ; ~16,l!1 34 ,~16, 7~), 75 ,~66,79J, 3.0 2,;~ 49 ,~47,52J. 147 ,~57,283), 
17 16 15,11) 56 (15,144) 96 (19,144) 3.2 (2,6 11 (56,108) 310 (141,549) 
20 15 p4,l:~ 230 (~134,349t) 230 (~134,349t) 5.6 (3,7A 132 (67,18Ol) 931 ~~42,1640~) 
25 14 13,14 777 422,1654 771 422,1654 8.1 (1,11 252 Ci 75,344 5909 2032,8745 

60 X 40 20 42 ~42,4~1 102 ,~42,249) 242 ~237,24~} 
5.7 S~'~~ 85 ~63,10~~ 215 ~137,311} 

22 39 (37,42) 192 41,318) 229 (183,318) 3.5 (1,6 90 (62,125) 404 (241,694) 
25 37 ~~6,3!~ 449 (263,683) 449 ~~63,683~) 5.5 (2,7) 178 (121,26~~ 1010 (~597,16941) 
30 36 35,36 1168 (860,1512) 1168 860,1512 1.8 (1,10) 288 (224,364 5036 2811,9099 

10 X 10 4 1.1 p.O,1.;~ 1.1,p.O,3~~ 12J6,3~! 2.1 p,~t 13 ,~9,24). 18J7,3~! 
15 X 20 8 3.8 (3.5,4.2 24 (3.6,113) 39 (14,113) 4.0 (1,8 32 (18,62) 16 (28,202) 
25 X 30 10 12 (11,13) 54 (11,191;) 90 ~~O,19~~ 4.3 (2,11) 61 (36,13~~ 263 (59,819) 
20 X 30 10 10 (9.3,11 62 9.6,158 81 38,158 4.1 (113) 68 (35,120 230 (78,667) 

40 X 40 20 25, S24,25 1342 494,240~ 1342 S ~94'240~) 14.5 >~,2~? 184 p33,21~ 5663 ,~4304,6950). 
50 X 50 25 4~ ~46,41 2202 153,3887J) 2202/153,3887 24.7 6,42;) 247 (186,32~ ~ 22562 ~~3823,3249~~ 
60 X 60 30 79 7880 4759 ( 1967,8626 4759 1961 8626 29.9 ( 1549 284 (112351 31878 20336,43821 

Table 6.7 Computation times and size of problems 

Optimality is achieved in Step III for 307 instances (56%). For 204 (37 %) 
of these, an optimal solution had already been found in either Step I or Step 
II, and only the lower bound is improved here; for the other 103 instances (19 
%), both the optimal lower bound and the optimal solution are improved in 
Step III. These figures sustain our previous claims concerning the strength 
of the linear relaxation of the set covering formulation of the job grouping 
problem, and the usefulness of Step III in solving this problem to optimality 
(especially sparse instances). 

Finally, for 44 instances (9%), Step IV has to be performed in order 
to find an optimal solution. This last step is mostly required for sparse 
instances, but is almost never needed for the "structured" instances in the 
third set. This confirms our earlier conjecture that most heuristics perform 
better on the latter instances than on completely unstructured ones. 

Table 6.7 contains information about the time required to solve the var
ious insta.nce types; comparison of these times provides additional informa
tion on the effectiveness of the procedure. Each entry has the format "av
erage value (minimal value, maximal value)" (the four instances for which 
the column generation procedure cycles have not been taken into a.c,count 
when computing these average or extremal values). Column 1 gives the 
computation time for Step I of the procedure and Column 2 records the 
total computation time for the whole procedure (Steps I to IV) (all times 
are in seconds). In columns 3, 4 and 5, averages and extremal values are 
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restricted to those instances for which execution of the column generation 
step (Step III) was necessary. Column 3 reports the total computation time 
required by Steps I-N for these instances. Column 4 gives the number of 
iterations of the column generation step, that is the number of calls on the 
linear programming package. Column 5 indicates the maximum number of 
columns occurring in the linear programming subproblems. The figures in 
this column are to be contrasted with those in Column 6, where the number 
of maximal feasible groups for each instance type is recorded. As mentioned 
in Section 6.2.1, this number indicates the size of the complete set covering 
formulation of the job grouping problem. Thus, it also gives a measure of 
the difficulty of the instances. 

A look at Column 6 immediately reveals that only the sparse instances 
are really big. For many ofthe dense instances (e.g., oftype (M, N, Ct )), the 
complete column generation model could have been explicitly generated and 
solved by LINDO, rather than resorting to a column generation procedure. 
Let us remember, however, that the characteristics of the dense instances 
in the second set correspond to those of the instances solved by Tang and 
Denardo (1988b); therefore, considering such instances allows to put our 
computational results in perspective. 

The time required by Step I of the procedure (Column 1) remains very 
short in comparison with the total computing time. It exhibits a tendency 
to decrease as capacity increases; this may be explained by the fact that, as 
capacity grows larger, the number of groups built by the heuristics decreases 
(see Table 6.5). 

As may be expected, the total computation time grows together with 
the problem dimension, and especially with the number of maximal feasible 
columns (Column 6). The number of iterations of the column generation 
subroutine and the size of the LP subproblems grow simultaneously. For 
small or dense instances, the computation times remain very short. E.g., for 
the instances in the second set, the average computation times are between 
7 and 62 seconds, and all these instances can be solved within 3+ minutes. 
The computation times grow by a factor of 3 when the dimension goes from 
(10,10,4) to (15,20,8), and by a factor of 2.5 from (15,20,8) to (20,30,10) or 
(25,30,10). Tang and Denardo (1988b) do not report computation times, but 
the number of nodes enumerated by their branch-and-bound procedure for 
the same instance types roughly grows by factors of 10 and II), respectively. 

For larger, sparser instances, computation times become more consider
able. This can be explained in part by the larger number of iterations of the 
column generation step, and by the increasing size of the LP subproblems. 
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Notice that these two factors may be influenced by the choice of some of the 
parameters defining the procedure; in particular, generating less columns 
in each step would result in a larger number of iterations, but would also 
decrease the time spent in each iteration. In fact, it is likely that the effi
ciency of the procedure could be boosted by using a heuristic to solve the 
generation subproblem, instead of the complete enumeration approach that 
we used. Complete enumeration would then only be required in the last it
erations of the column generation step, to check that no more columns with 
negative reduced cost can be found. However, as explained in Section 6.2.3, 
such an approach could only be efficiently implemented if an LP solver more 
flexible than LINDO is available. 

Finally, let us mention that the time needed to execute Step II also grows 
sharply with increasing capacity. This time is not singled-out in Table 6.7, 
but represents an important chunk of the total computation time: on aver
age, 4 seconds (resp. 52, 146, 177,505 and 1029 seconds) for the instances 
of size (20,15) (resp. (40,30), (60,40), (40,40), (50,50) and (60,60)). In order 
to assess the contribution of Step 2 to the efficiency of the whole procedure, 
we ran some experiments in which we disabled this step (more exactly, we 
disabled the demanding second half of this step, which extends the initial 
set covering formulation - see Section 6.4). It turned out that this modified 
procedure was slower, on the average, than the initial one - even though it 
was faster for some particular instances. 

6.6 Summary and conclusions 

In this chapter, various lower and upper bounds have been proposed for the 
job grouping problem. In particular, we showed how the optimal value of 
the LP-relaxation of the set covering formulation of the problem can be com
puted by a column generation procedure. Although the column generation 
subproblem is NP-hard, the procedure that we implemented could solve to 
optimality 550 instances of the problem. Many of these instances are larger 
and sparser than the ones previously solved in the literature. This was only 
possible because of the tightness of the lower bound computed : for all 550 
instances, the lower bound was equal to the optimal value of the instance. 

An interesting area for further research may be the development of fast 
heuristics that would provide optimal results for large instances of the prob
lem. It would also seem interesting to be able to compute good heuristic 
solutions and tight upper bounds for the column generation subproblem. In 
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Chapter 7 we study extensions of the present setting to situations involving 
multiple machines, or where each tool requires several slots in the tool mag
azine. 
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Chapter 7 

The job grouping problem 
for flexible manufacturing 
systems: some extensions 



7.1 Introduction 

In Chapter 6 the job grouping problem for flexible manufacturing systems 
has been studied. This chapter concentrates on extensions of the previous 
model. First, the extension where tools may require several slots in the tool 
magazine is discussed. Next, we consider the case where several identical 
machines are necessary for production. In both cases, the procedures used 
in Chapter 6 are extended to derive strong lower and upper bounds on the 
optimal value of the problem and results of computational experiments are 
presented. In Section 7.4 we discuss the possibility to incorporate due dates 
in the model. Section 7.5 summarizes and concludes the chapter. 

7.2 Multiple slots 

7.2.1 The job grouping problem 

In Chapter 6 a job grouping model is considered in which each tool requires 
exactly one slot in the tool magazine. However, tools often require several 
slots in the magazine as observed by Stecke (1983; 1989), Kusiak (1985a), 
Rajagopalan (1985; 1986) and Hwang (1986). Therefore, we relax the one
slot assumption, by allowing the number of slots necessary for a tool to be 
tool-dependent. We will perform computational experiments on problems for 
which tools need 1 to 3 slots, as suggested by Rajagopalan (1985), Shanker 
and Tzen (1985) and Mazzola, Neebe and Dunn (1989). First, we briefly 
discuss the set covering formulation of the job grouping problem and the 
column generation procedure used to solve it. The changes that are necessary 
in case tools need several slots in the tool magazine are incorporated in this 
explanation. 

Assume there are N jobs and M tools. We denote by Sk the number 
of slots that are necessary to place tool k in the tool magazine. The tool 
requirements are represented by a so-called tool-job matrix A of dimension 
M x N, with: 

aki = 1 if job i requires tool k 
= 0 otherwise, 

for k = 1, ... , M and i = 1, ... , N. A subset (group) S of jobs (or of columns 
of A) is called feasible if the tools that are needed for these jobs together 
require at most C slots, i.e. if Lk {Sk : aki = 1 for some i E S} ~ C. We do 
not consider the possibility of tool overlap (where the total number of slots 
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needed by a set of tools is strictly less than the sum of the slot requirements 
of the separate tools (Stecke, 1983». The job grouping problem consists in 
finding a minimum set of feasible groups such that each job is contained in 
(at least) one group. It can be formulated as a set covering problem, as 
shown in Chapter 6. Let us suppose that there exist P feasible groups, and 
let 

% = 1 if job i is contained in the feasible group j, 
= 0 otherwise, 

for i = 1, ... , Nand j = 1, ... , P. The job grouping problem is: 

p 

minimize LYj 
j=l 
P 

subject to Lq··y· > 1 'J J - i = 1, ... ,N, 
j=l 

y' > 0 J - j = 1, ... ,P, 

Yj integer j = 1, ... ,P, 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

where Yj = 1 if group j is part of the optimal covering. In comparison 
with the model described in Chapter 6 the introduction of tool-dependent 
slot requirements has influenced the set of feasible columns {qj} (where 
qj = (qlj, ... ,qNjf), but model (7.1) - (7.4) remains otherwise the same. 

Notice that the job grouping problem with Sk > 1 for some k could also 
be transformed into an equivalent job grouping problem with sk = 1 for all 
k in a straightforward way. Namely, consider the tool-job matrix A and the 
values Sk for each tool k. Now, construct a new tool-job matrix A' where 
each row k in A is replaced by Sk similar rows in A'. The tool-job matrix 
A' has L:~1 Sk rows and N columns. Solving the job grouping problem 
with tool-job matrix A', sk = 1 for all k and tool magazine capacity C is 
equivalent to solving the job grouping problem described by the parameters 
A, Sk and C. This transformation has the disadvantage that it expands the 
size of the problem, but clearly shows that the job grouping problem where 
tools need several slots is a special case of the single-slot problem. Thus, 
the lower and upper bounding procedures developed in Chapter 6 can be 
easily adjusted to this case. In fact, this section can be seen as restating the 
procedures described in Chapter 6 in such a way that they can be applied 
directly to the instance A, Sk, C. The result will be a general procedure for 
the "multiple slots" problem with no preprocessing of the data. The new 
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formulation will be more compact. Notice that we may expect instances 
with Sk > 1 to have a different behaviour than the single-slot ones. This will 
be investigated by performing computational experiments. 

7.2.2 Lower bounds via column generation 

To find a lower bound for the set covering problem (7.1) - (7.4), we want to 
solve its LP-relaxation, i.e. the problem (7.1) - (7.3). A column generation 
procedure is used to calculate this bound, as in Chapter 6. At each iteration 
of the column generation procedure, we solve the LP obtained by restricting 
(7.1) - (7.3) to some subset T of columns, i.e. we solve a problem of the 
form: 

minimize L: Yj (7.5) 
JET 

subject to L: %Yj ~ 1 i = 1, ... , N, (7.6) 
JET 

Yj ~ 0 JET, (7.7) 

for some T ~ {1, ... , Pl. Let y* be an optimal solution to (7.5) - (7.7) and 
A* be an optimal solution to the dual of (7.5) - (7.7). In each iteration ofthe 
column generation procedure the generation subproblem has to be solved 
(see Section 6.2). The generation subproblem identifies columns that have 
negative reduced cost and may, when added to the set covering formulation, 
improve the optimal solution value. The generation subproblem is 

given Ai, ... , AN, is there a feasible group S such that L: Ai > 1? (7.8) 
iE8 

After introduction of different sizes for the tools the generation subprob
lem can be formulated as follows (see also Hirabayashi, Suzuki and Tsuchiya 
(1984)): 

N 

maximize L: Aixi 
i=l 

subject to akixi ~ Zk 

M 

L: SkZk ~ C 
k=l 

Xi E {0,1} 

Zk E {0,1} 

i = 1, ... , N; k = 1, ... , M, 

i = 1, ... ,N, 

k=1, ... ,M, 

(7.9) 

(7.10) 

(7.11) 

(7.12) 

(7.13) 
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where 

Xi = 1 if job i is in group S 
= 0 otherwise, 

for i = 1, ... , N, and 

Zk = 1 
=0 

if tool k is required by some job in S, 
otherwise, 

Chapter 7 

for k = 1, ... , M. Only restriction (7.11) has changed in comparison with 
the generation subproblem in Section 6.2.3, so as to incorporate the number 
of tool slots needed for each tool. The problem (7.9) - (7.13) is NP-hard and 
we solve it using the same enumeration procedure as in Section 6.2.3. The 
column generation procedure that is used is basically the same as described 
in Section 6.2.4. When the column generation procedure stops we have an 
optimal solution y* for the LP relaxation (7.1) - (7.3). Rounding up the 
solution value E jET yJ to the next integer gives a lower bound for the job 
grouping problem. We will refer to the bound rEjET YJl as LBcG. We 

will also consider the lower bound LBFarley = rE~l -Xi!Zl, where Z is the 
optimal solution value ofthe generation subproblem (see also Farley (1990)). 

7.2.3 Other lower bounds 

The sweeping procedure (Tang and Denardo, 1988b) provides a lower bound 
for the job grouping problem when all tools need 1 slot. Tang and Denardo 
(1988b) did not consider the "multiple slots" problem. However, the sweep
ing procedure can be modified to be applicable to "multiple slots" instances. 
Call two jobs compatible if they form a feasible group. The sweeping proce
dure sequentially creates a number of groups as follows. In each step of the 
procedure, a job (seed) first is selected which is compatible with the fewest 
number of other (not yet selected) jobs (in case of a tie, the job for which the 
tools necessary for the set of compatible jobs require the smallest number 
of slots in the tool magazine is selected). Next, the seed along with all jobs 
which are compatible with it are selected to form one group. The proce
dure is repeated until all jobs have been selected. The number of groups 
so created, say L, is a valid lower bound for the job grouping problem. We 
also use the trivial lower bound rE~l sk/Cl. Combining this bound with 
L yields the lower bound LBsw = maxHE~l sk/Cl,L}. 

A better lower bound can be obtained in each step of the sweeping pro
cedure by summing the number of groups already created by the sweeping 
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procedure and the lower bound rEkeu;erT; sk/Cl, where I is the set of "not 
yet selected" jobs, and Ti is the set of tools needed for job i. This procedure 
generates a sequence of valid lower bounds, the first of which is equal to 
rE~l sk/Cl and the last of which is equal to L. We refer to this procedure 
as the "modified sweeping procedure". It yields a new lower bound LBMSW, 
equal to the maximum of the bounds in the sequence. 

7.2.4 Upper bounds 

We apply sequential heuristic procedures that use a two-step approach for 
building groups. In the first step, a job is picked as a seed. Unless explained 
otherwise, we always pick a job for which the tools require the highest num
ber of slots. Then a selection rule is used to add jobs to the group until the 
tool magazine capacity constraint prohibits the addition of any other job to 
this group. The two-step procedure is repeated until all jobs are assigned to 
some group. For selecting the next job to be-assigned to a group (in step 2) 
a number of different rules have been considered. 

For a group S and a job i ~ S, let 
ti =number of slots necessary for the tools required by job i; 
bi =number of slots necessary for the tools required both by job i and by 
some job already in S. 

1. MIMU rule: select a job i for which bi is maximal; in case of a tie select 
a job for which ti is minimal (this is a straightforward generalization 
ofthe procedure by Tang and Denardo (1988b». 

2. MI rule: select a job i for which bi is maximal. 

3. MU rule: select a job i for which (ti - bi) is minimal. 

4. Whitney and Gaul rule: select job i for which (bi + 1)/(ti + 1) is max
imal (Whitney and Gaul (1985) did not consider the "multiple slots" 
problem, but this rule is a straightforward extension of the single-slot 
rule). 

5. Rajagopalan rule: Each tool k receives a weight ak equal to the number 
of jobs that require tool k among the jobs that still have to be assigned 
to a group. Then, the priority of job i is calculated by summing the 
weights Sk . ak of the tools that must be added to the tool magazine in 
case job i is assigned to the group. The job with the largest priority 
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is selected first. For this rule, the first job in each group (seed) is also 
selected according to the same criterion (see Rajagopalan (1985)). 

6. Modified Rajagopalan rule: The Rajagopalan rule can be changed in 
the following way: the weight ak for each tool k is defined as the 
number of jobs that require tool k among the jobs already selected in 
the group. The priority of a job is the sum of the weights Sk • ak of the 
tools that are needed for that job. The job with the highest priority is 
selected. 

7. Marginal gain rule: The addition of job i to a group usually requires 
that extra tools be loaded in the tool magazine. This new tool con
figuration may in turn allow the execution of other, not yet selected, 
jobs; denote by Pi the number of such jobs. This rule selects a job i 
that maximizes Pi. 

Compared to what was done in Section 6.3.1, the MIMU, MI, MU and 
Whitney and Gaul rule have been adjusted by simply updating the defini
tions of parameters ti and bi. Rules 5 and 6 have been changed by incorpo
rating the number of slots in the definition, as in Rajagopalan (1985). The 
Marginal gain rule uses the new definition of feasibility of a group. The set 
covering heuristics can also be used as described in Section 6.3.2. 

7.2.5 Adjusting the column generation procedure 

The column generation approach can be easily adapted to the multiple slots 
per tool-case. The procedure that is implemented consists of four main 
steps. We first briefly sketch the whole procedure before commenting on 
each individual step (see also Section 6.4). 

Step I: Use the sequential heuristics to produce a first upper bound. Com
pute the simple lower bounds LBsw and LBMSW. If optimality is 
achieved then STOP. Otherwise construct an initial set covering for
mulation using the groups that have been generated using the heuristic 
procedures. 

Step II: Use the greedy heuristic to solve the initial set covering formula
tion. If optimality is achieved then STOP. 

Step III: Solve the LP-relaxation ofthe current formulation. Check whether 
the primal solution is integral and whether its value improves the cur
rent upper bound. Use the dual variables to formulate the generation 
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subproblem and generate new columns with negative reduced cost. 
Calculate LBFarley. IT optimality is achieved then STOP. IT no columns 
with negative reduced cost have been found, then continue with Step 
IV. Otherwise, update the set covering formulation and repeat Step 
III. 

Step IV: Use the last set covering formulation for finding an improved 
heuristic solution. 

The lower and upper bounding procedures of Step I have been described 
in Sections 7.2.2 - 7.2.4. In Step II no additional columns are generated 
( contrary to what was done in Section 6.4 for the single-slot case) for reasons 
of time-efficiency. The set covering formulation is solved using the well
known greedy heuristic (Nemhauser and Wolsey, 1988). The LP-relaxation 
is solved using the package LINDO. When the generation subproblem is 
solved to optimality (Le. when a complete enumeration is performed), its 
optimal value Z is used for computing the bound LBFarley' IT this lower 
bound is equal to the upper bound the procedure stops. IT no new column 
has been generated (Le. Z = 1 and LBFarley = LBcG), then the column 
generation subroutine terminates, and we continue with step IV. Otherwise, 
at most 200 new columns are added to the set covering formulation. Also, 
to limit the size of the formulation all columns with a small reduced cost 
are eliminated. More precisely, columns for which r:f:l %Ai < 1 - a are 
removed from the formulation, where a is an arbitrary chosen parameter (a 
= 0.25). Furthermore, columns with r:f:l %Ai < 0.85 are removed when 
the number of columns exceeds 700 (an arbitrary maximum). Step IV of 
the procedure is extended in the following way. We first solve the last set 
covering formulation by the greedy heuristic. IT this is not effective, we 
solve a slightly modified set covering formulation with LINDO, requiring 
only a limited number of variables to take 0-1 values. More precisely, the 
T variables which assume the largest value in the continuous solution of the 
set covering formulation (columns for which r:f:l %Ai < 0.9 are removed 
to limit the size of the formulation), extended by the additional constraint 
r:f=l Yj 2': LBcG, are forced to be integer. The parameter T is taken equal 
to LBcG + 5 if the number of columns is smaller than 50 (resp. LBcG + 15 
if the number of columns is between 50 and 150, and LBcG + 25 otherwise). 
Because of the small number of integer variables, the resulting mixed 0-1 
problem can be solved by LINDO's branch-and-bound subroutine (see also 
Section 6.4). IT the solution is still fractional after this step, additional 
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variables (that still have positive fractional values) are forced to take 0-1 
values and the formulation is solved again. This procedure is repeated until 
an integer solution is obtained. 

7.2.6 Computational experiments 

We generated two sets ofrandom instances. Table 7.1 contains the parame
ter ~ettings for the first set. This set of instances involves four instance sizes 
(M, N). The capacity ofthe tool magazine takes one ofthe values Ct, C2, C3. 
Min (resp. Max) represent the minimal (resp. maximal) number oftool slots 
needed by each job. For each instance type (M, N, C) two ranges of values 
for sk(k = 1, ... , M) are considered, as shown in column labelled" Sk E". 
We assume that tools need a small number of tool slots (Sk E {I, 2, 3}), 
as often seems to be the case in real-world systems. Rajagopalan (1985), 
Shanker and Tzen (1985) and Mazzola et al. (1989) perform computational 
experiments using these values. Stecke (1989) gives a detailed description of 
a system for which the tools take either 1 or 3 slots. For the first range of 
values, Sk only takes values in {I, 2, 3}, namely Sk = 1 for k = 1, ... , LjMJ, 
Sk = 2 for k = LjMJ + 1, ... , L~MJ and Sk = 3 for k = L~MJ + 1, .. . ,M. 
For the second range, Sk E {I, 3} for all k, with Sk = 1 for k = 1, ... , LjMJ 
and Sk = 3 for k = LiMJ + 1, ... ,M. 

Problem size C1 C2 C3 Sk E Min Max 
MxN 
10 x 10 7 10 13 {1,2,3} 1 6 
10 x 10 7 10 13 {1,3} 1 6 
15 x 20 13 15 18 {1,2,3} 1 12 
15 x 20 13 15 18 {1,3} 1 12 
25 x 30 15 20 25 {1,2,3} 1 14 
25 x 30 17 21 25 {1,3} 1 16 
60 x 40 30 40 45 {1,2,3} 1 29 
60 x 40 33 40 45 {1,3} 1 32 

Table 7.1 Parameters first set of instances 

For each problem size (M, N, C) 10 random matrices A were generated. For 
each j = 1, ... , N, the j-th column of A was generated as follows. First, 
an integer tj was drawn from the uniform distribution over [Min,Max]: this 
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number denotes the number of tool slots available for job j. Next, a set 
Tj of distinct integers were drawn from the uniform distribution over [1, M] 
until at most tj slots were used, i.e. until L:kETj Sk > tj - 3. These integers 
denote the tools required by job j, i.e. akj = 1 if and only if k E Tj. Finally, 
we checked whether Tj ~ Ti or Ti ~ Tj held for any i < j. If any of these 
inclusions was found to hold, then the previous choice of Tj was cancelled, 
and a new set Tj was generated. 

Problem size C1 Sk E Min Max Minjob Maxjob 
MxN 
30 X 30 20 {1,2,3} 7 11 4 7 
30 X 30 20 {1,3} 7 11 4 -7 
40 X 40 30 {1,2,3} 10 16 5 8 
40 X 40 30 {1,3} 10 16 5 8 

Table 7.2 Parameters second set of instances 

In Table 7.2 the parameter settings are described for the second set of in
stances (comparable to the third set in Section 6.5.1). For each instance class 
(M, N, C) 10 instances were generated. This second set explicitly takes into 
account the interdependence between jobs. First, a number NI is drawn 
uniformly between Minjob and Maxjob, and a subset Ml, containing tools 
that together require exactly C tool slots, is randomly chosen. Then, we 
create NI "similar" jobs, by making sure that these jobs use only the tools 
in MI. These jobs are generated as explained before for the first set of in
stances (except that they are restricted to the tools in Md. When NI jobs 
have been defined, then the procedure is iterated to produce N2 , N3 , • •• ad
ditional jobs. This process stops after k iterations, when almost all columns 
of the incidence matrix have been generated (specifically, when L:f=l Ni ~ N 
- Maxjob). Then, the last columns are filled independently of each other, 
as for the first set of instances. Finally, a real-world instance describ,ed in 
Stecke (1989) was also tested. This instance involves 10 jobs and 141 tools, 
with 100 tools using 1 slot and 41 tools using 3 slots. 

7.2.7 Computational results 

The column generation procedure has been implemented using Turbo Pascal, 
and tested on the instances described in Section 7.2.6. The experiments 
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were run on an AT personal computer with a 16MHz 80386sx processor and 
80387 mathematical coprocessor. This section reports on the results of our 
experiments. 

Using the procedure of Section 7.2.5. 271 of the 280 "multiple slots" 
instances were solved to optimality. The gap between the value of the LP
relaxation of the set covering formulation and the value of the optimal solu
tion was smaller than 1 for all instances solved to optimality. In other words 
the lower bo-und LBoG was optimal for these instances. For the remaining 
9 instances the procedure finished with a lower and upper bound that dif
fered by one unit. As a matter of fact, the gap between the optimal value 
of the LP-relaxation of the set covering formulation and the best known up
per bound amounts to maximal 1.05 for these instances. For some of these 
instances, a branch- and-bound procedure was eventually used to show that 
the upper bound was optimal and there was indeed a gap between the lower 
bound LBoG and the optimal solution value. Nevertheless, our experiments 
seem to show that the lower bound obtained by using the LP-relaxation 
of the set coveririg formulation is usually very good, even though it is not 
optimal for all instances. 

The quality of the lower bounds LBsw, LBMSW, LBoG and of the so
lutions obtained by the sequential heuristics in step I of the procedure is 
compared in Table 7.3. The column labelled OPT gives the average number 
of groups in the optimal solution for the instances of each type that were 
solved to optimality using the procedure of Section 7.2.5. The next three 
columns bear on the lower bounds. The columns 2 to 8 in Table 7.4 cor
respond to the upper bounds delivered by the seven sequential heuristics, 
and the last column (labelled Best) reports on the upper bound obtained by 
retaining the smallest of the previous seven ones. Each entry in columns 2 to 
4 of Table 7.3 and columns 2 to 9 in Table 7.4 has the format 8 (a). In a row 
labelled (M, N, C) and a column labelled X, 8 is the average difference over 
all instances oftype (M, N, C) between the lower (or upper) bound X and 
the best lower (or-upper) bound computed for this instance in the course of 
the procedure; that is, 8 = X - BO UN D, where X is the average of the 
lower (or upper) bound X and BO UN D is the average of the best lower (or 
upper) bound. 
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Lowerbounds 
Instance type 

OPT LBsw LBMSW LBcG 
MxN C 1 2 3 4 

10 X 10 7 3.3 -0.3 (7) -0.3 (7) o (10) 
10 2.0 0.0 (10) 0.0 (10) 0(10) 

SkE{1,2,3} 13 2.0 0.0 (10) 0.0 (10) 0(10) 
10 X 10 7 4.3 -0.4 (6) -0.1 (9) 0(10) 

10 2.8 -0.8 (2) -0.8 (2) o (10) 
Sk E {1, 3} 13 2.0 0.0 (10) 0.0 (10) 0(10) 

15 X 20 13 6.0 -1.2 (1) -1.0 (2) o (10) 
15 4.2 -1.5 (0) -1.3 (0) o (10) 

Sk E {1, 2, 3} 18 2.8 -0.8 (2) -0.8 (2) o (10) 
15 X 20 13 7.6 -1.0 (2) -D.8 (3) 0(10) 

15 5.1 -1.5 (1) -1.4 (1) o (10) 
Sk E {1,3} 18 3.3 -1.3 (0) -1.1 (0) 0(10) 

25 X 30 15 13.4 -1.2 (2) -0.8 (6) 0(10) 
20 7.2 -3.7 (0) -3.3 (0) o (10) 

skE{1,2,3} 25 4.4 -2.4 (0) -2.4 (0) 0(10) 
25 X 30 17 12.8 -0.9 (3) ~0.8 (4) 0(10) 

21 7.9 -2.8 (0) -2.7 (0) 0(10) 
Sk E {1,3} 25 5.6 -3.2 (0) -2.9 (0) 0(10) 

60 X 40 30 18.1 -11.3 (0) -11.3 (0) o (10) 
40 10.7 -5.1 (0) -4.8 (0) o (10) 

SkE{1,2,3} 45 8.6 -6.0 (0) -5.6 (0) o (10) 
60 X 40 33 19.4 -11.8 (0) -11.8 (0) o (10) 

40 13.7 -6.1 (0) -6.1 (0) 0(10) 
SkE{1,3} 45 11.1 -5.6 (0) -5.5 (0) 0(10) 

30 X 30 {1,2,3} 20 5.3 -2.3 (0) -2.3 (0) 0(10) 
30 X 30 {1, 3} 20 5.5 -2.5 (0) -2.5 (0) 0(10) 

40 X 40 {1,2,3} 30 6.4 -3.4 (0) -3.4 (0) 0(10) 
40 X 40 {1, 3} 30 6.8 -3.7 (0) -3.7 (0) 0(10) 

Table 7.3 Quality of lower bounds 
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Upper bounds 

Insta.nce type OPT MIMU MI MU Whit. Rajaso. Mod. Marg. Best 
+ Gaul pala.n Raj. gain 

MX 1 2 3 4 5 6 7 8 9 

10 X 10 7 3.3 0.1,\9), 0.3,\7), 0.1 I;'! 0.1 I~! 0.5 I;) 0.25.8 ) 0.6 \~! O.Q (.10) 
10 2.0 0.2 (10) 0.2 (10) 0.4 (8) 0.4 (8) 0.5 (7) 0.2 (10) 0.4 (8) 0.2 (8) 

S E {1,2,3} 13 2.0 0.0 (10) 0.0 (10) 0.0 (iO) 0.0 (iO) 0.0 (iO) 0.0 (10) 0.0 (10) 0.0 (iO) 
10 X 10 7 4.3 0.1 \1~! 0.1 \1~! 0.2 \~! 0.1 \1~! 0.4 \!! 0.1 \1~! 0.3 ,~8I 0.1 ,~9J, 

10 2.8 0.0 (10) 0.0 (10) 0.1 (9) 0.0 (10) 0.2 (8) 0.0 (10) 0.0 (10) 0.0 (10) 
skE{1,3} 13 2.0 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.4 (6) 0.0 (10) 0.2 (8) 0.0 (10) 

15 X 20 13 6.0 0.7 \~! 0.3 \10) 1.2 \~! 0.8 \~! 1.6 \~! 0.3. (}~) 0.6 I:! 0.3 I:! 
15 4.2 0.5 (8) 0.3 (10) 0.8 (5) 0.5 (8) 1.6 (1) 0.4 (9) 0.8 (5) 0.3 (7) 

sk E {1,2,3} 18 2.8 0.1 (9) 0.0 (10) 0.2 (8) 0.1 (9) 0.9 (2) 0.2 (8) 0.4 (6) 0.0 (10) 
15 X 20 13 7.6 0.5 I~! 0.4 I:! 1.1 I~! 0.6 I:! 1.1 I~! 0.4 I:! 0.9 \~! 0.3 I~! 

15 5.1 0.6 (6) 0.4 (8) 1.0 (3) 0.5 (7) 2.1 (0) 0.4 (9) 1.0 (2) 0.2 (8) 
S E {I, 3} 18 3.3 0.5 (6) 0.3 (8) 0.5 (7) 0.5 (7) 0.8 (5) 0.3 (8) 0.5 (5) 0.1 (7) 

25 X 30 15 13.4 0.5 (8) 0.4 (9) 0.9 (5) 0.4 (9) 2.3 (0) 0.3. (}O) 0.8 (5) 0.3 (7) 
20 7.2 0.9 (5) 0.5 (8) 1.3 (3) 0.8 (5) 3.2 (0) 0.9 (4) 1.5 (2) 0.3 (6) 

sk E {1,2,3} 25 4.4 0.6 (9) 0.5 (10) 1.0 is) 0.9 (6) 2.5 iO) 0.7 (8) 1.2 (4) 0.5 (4) 
25 X 30 17 12.8 0.8 (3) 0.2 (9) 1.1 (2) 0.6 (5) 2.4 (0) 0.2 (9) 1.0 (1) 0.1 (9) 

21 7.9 1.3 (5) 0.8 (10) 1.7 (2) 1.2 (6) 3.3 (0) 0.9 (~j 2.0 i~) 0.8 I;) 
S E f1, 3} 25 5.6 0.8 (6) Q.7 '(7) 1.3 (1) 0.9 (3) 3.1 (0) 0.7 (7 1.3 2) 0.4 5) 

60 X 40 30 18.1 0.8 \5! 0.4 \9! 1.5 \~! 0.8 \5! 1.6 \~! 0.4 I:! 1.2 \~! 0.3 \:! 
40 10.7 1.6 (1) 0.6 (9) 2.2 (0) 1.4 (4) 2.9 (0) 0.7 (8) 2.0 (0) 0.5 (4) 

sk E {1,2,3} 45 8.6 1.3 (4) 0.5 (10) 1.9 (1) 1.0 (5) 3.5 (0) 0.8 (7) 2.2 io) 0.5Gt 
60 X 40 33 19.4 0.5 I~! 0.4. (.I 0) 1.2 I~I 0.5 I:! 1.9 \~I 0.4. (}~) 1.1 \~! 0.4 \~! 

40 13.7 1.6 (2) 0.6 (9) 2.1 (0) 1.5 (2) 2.9 (0) 0.7 (8) 1.9 (1) 0.5 (5) 
S E {I, 3} 45 11.1 1.3 (5) 0.8 (10) 2.4 (0) 1.8 (1) 3.3 (0) 1.1 (7) 2.4 (0) 0.8 (2) 

30 X 30y,2,~j 20 5.3 0.6 I~! 0.6 \~! 0.8 \~! 0.6 \:1 3.2 \~! 0.5 \~! 1.4 \~! 0.3 \6) 
30 X 30 {1,3} 20 5.5 0.7 (8) 0.9 (6) 1.0 (5) 0.7 (8) 3.2 (0) 0.7 (8) 1.3 (3) 0.5 (5) 

40 X 40 {1,2,3} 30 6.4 1.3 (2) 0.7 (7) 1.5 (3) 1.1 (3) 5.0 (0) 1.3 (2) 2.3 (1) 0.4 (5) 
40 X 40 {1,3} 30 6.8 1.2 (7) 0.8 (9) 1.4 (5) 1.3 (5) 5.0 (0) 1.3 (5) 1.9 (2) 0.7 (3) 

Table 7.4 Quality of upper bounds 
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In columns 2 to 8 in Table 7.4 (that is; for the sequential heuristics), die 
entry a denotes the number of instances of type (M, N, C) for which the 
upper bound X is best among the sequential heuristics. In the columns 2, 
3, 4 of Table 7.3 and column 9 of Table 7.4, a is the number of instances for 
which X is equal to the best lower (or upper) bound of the instance. 

For 271 out of 280 instances the best lower bound (LBcG) is equal to the 
optimal solution value. For the remaining 9 instances the best lower bound 
and the best upper bound differ by one group. The lower bounds LBsw 
and LBMSW are seldom sharp (only for small instances and instances of 
type (M, N, C 1». Table 7.4 also shows that the MI and the Modified Ra
jagopalan rules (in that order) outperform the other rules. The performance 
of the MIMU and the Whitney and Gaul rule is quite good. The MU and 
the Marginal gain rules are much weaker. The Rajagopalan rule performs 
even worse (especially for the instances of the second set). Taking the best 
solution of the sequential heuristics, a solution is obtained which is optimal 
or close to optimality (gap of 1) for nearly all instances (for about half of the 
larger instances an optimal solution is obtained). Because of the poor quality 
of the lower bounds LBsw and LBMSW the column generation procedure 
is needed for a large majority of the instances. 
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Instance type Step I Step II Step III Step III Step IV Step IV 
MxN (J CG IP A B 

10 x 10 7 7 3 
10 8 2 

s" E {I, 2, 3} 13 10 
10 x 10 7 8 1 1 

10 2 8 
s" E {I,3} 13 10 

15 x 20 13 1 6 1 2 
15 7 1 2 

s" E {I, 2, 3} 18 2 8 
15 x 20 13 2 5 2 1 

15 8 2 
s" E {I,3} 18 7 1 

25 X 30 15 4 3 3 
20 6 1 2 

s" E {I, 2, 3} 25 4 2(3) 
25 X 30 17 4 + 6 

21 2 3 5 
s" E {I, 3} 25 5 1 3 

60 X 40 30 7 2 1 
40 4 1 3(1) 

s" E {I, 2, 3} 45 5 3 2 
60 X 40 33 6 4 

40 5 3 1 1 
s" E {I,3} 45 2 2 4 2 

30 X 30 {I, 2, 3} 20 6 2 1 
30 X 30 {I,3} 20 5 3 1 1 

40 X 40 {I, 2, 3} 30 5 4 
40 X 40 {I, 3} 30 3 2 4 

All mstances II 58 I 0 (+1) I 127 32 I 44 (4) I 6 

Table 7.5 Performance of different steps of the column generation 
procedure 

Gap 

2 

1 
1 

1 

1 

1 

1 
1 

9 II 
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Table 7.5 summarizes the results obtained by the complete procedure de
scribed in Section 7.2.5. We concentrate on the moments at which optimality 
is established; that is, Table 7.5 gives, for each instance type, the number of 
instances solved in each step of the procedure (the numbers in brackets refer 
to 4 instances for which no optimal solution had been found after comple
tion of Step IV; all these instances were ultimately solved to optimality by a 
variant of the procedure using different parameter settings). Zero values are 
omitted from the table to improve readability. Thus, for instance, the col
umn labelled "Step I" displays the number of instances for which optimality 
is achieved in Step I of the procedure : these are the instances for which 
the lower bound LBMSW is equal to Best, viz. the best sequential heuristic 
value. The instances for which LBMSW is optimal and Step II produces an 
optimal solution are recorded in column "Step II" (a "+" in this column 
denotes an instance where LBMSW is not optimal, but Step II produces an 
optimal solution). If optimality is not established in either Step I or Step 
II, the column generation process starts. Column "Step III-CG" records the 
number of instances for which the column generation procedure provides a 
lower bound (LBFarley or LBcG) equal to the best upper bound obtained 
in Steps I and II. Those instances for which an optimal 0-1 solution is found 
in the course of solving the set covering LP-relaxation are accounted for in 
column "Step III-IP". After Step III, instances remain for which the lower 
bound LBcG is smaller than the best available upper bound. Column "Step 
IV - A" shows the number of instances for which solving the set covering 
formulation with a limited number of integer variables was enough to pro
duce an optimal solution with value equal to LBcG. Column "Step IV - B" 
shows the number of instances for which Step IV - A did not suffice, but 
for which an optimal solution was obtained after more variables were forced 
to take 0-1 values, as described in Section 7.2.5. Column "Gap" displays 
the number ofinstances for which the best lower bound (LBcG) was strictly 
smaller than the best known upper bound at the end of the procedure. 

Table 7.5 shows that for 21 % of the instances optimality is achieved in 
Step I (mainly smaller instances). For only one instance Step II offered a 
better upper bound. In Step III optimality is achieved for 159 instances (57 
%). For 32 instances (11 %) the upper bound was improved in Step III. For 
63 instances (23 %) Step IV had to be performed. Four of these instances 
were solved with different parameter settings. For another 6 instances the 
solution of the set covering formulation remained fractional after a number 
of variables were forced to take 0-1 values. Nine instances could not be 
solved. For these instances a gap remained bety.reen LBcG and the best 
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upper bound (the largest gap between the LP-relax:ation value and the best 
upper bound amounts 1.05). A comparison with results of Section 6.6 shows 
that these instances seem to be harder than those considered in the previous 
study (see also column 6 in Table 7.6). 

Table 7.6 contains information about the time required to solve the var
ious instance types; comparison of these times provides additional informa
tion on the effectiveness of the procedure. Each entry has the format "av
erage value (minima! value, maximal value)" (the four instances for which 
the column generation procedure cycles have not been taken into account 
when computing these average or extremal values). Column 1 gives the 
computation time for Step I of the procedure and column 2 records the total 
computation time for the whole procedure (Steps I to IV) (all times are in 
seconds). In columns 3, 4 and 5, averages and extremal values are restricted 
to those instances for which execution of the column generation step (Step 
III) was necessary. Column 3 reports the total computation time required 
by Steps I-IV for these instances. Column 4 gives the number of iterations 
of the column generation step, that is the number of calls on the linear pro
gramming package. Column 5 indicates the maximum number of columns 
occurring in the linear programming subproblems. The figures in this col
umn are to be contrasted with those in Column 6, where the number of 
maximal feasible groups for each instance type is recorded. This number in
dicates the size of the complete set covering formulation of the job grouping 
problem (see Section 7.2.1). Thus, it also gives a measure of the difficulty of 
the instances. 

The computation times in Table 7.6 show that the large instances (espe
cially oftype (M, N, C3» take a lot oftime to reach optimality. This is due 
to the many calls to LINDO and the size of the set covering formulations 
that have to be solved in each step. For larger instances columns 2 and 3 are 
similar, because all instances need the execution of the column generation 
procedure. Column 4 shows that at most 26 calls to LINDO are necessary. 
The maximal average number of columns lies around 600 (which is close to 
the maximum of 700 columns). Th~ last column shows that the size of the 
complete set covering formulation for the large instances is indeed very large. 

The real-world instance of Stecke (1989) was solved to optimality by 6 out 
of 7 sequential heuristics (not recorded in the tables 7.4, 7.6 and 7.6). The 
lower bound LBcG was optimal, in contrast with the other lower bounds. 
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7.3 Multiple machines 

7.3.1 The joh grouping problem 

In practice a flexible machine is likely to be part of a system of several 
machines. Rajagopalan (1985) and Tang and Denardo (1988b) developed 
models to describe "multiple machine" problems. In this section we consider 
the job grouping problem for a number of identical machines, where each job 
has to be processed by each machine. Early flexible manufacturing systems 
consisted of different types of machines. Nowadays many machines and tools 
have become so versatile that only one'type of CNC machine can be used 
to produce a wide variety of part types (Hwang and Shogan, 1989). Many 
FMSs are configured with a group of these general-purpose CNC machines 
(Jaikumar, 1986; Jaikumar and Van Wassenhove, 1989) and a job entering 
such a system is routed to one of the available machines. IT each job has to 
be processed by only one machine, th.e single machine job grouping model 
(see Chapter 6) can be used, extended by a final step in which the groups 
are assigned to the different machines. However, other criteria like workload 
balancing tend to become more important for these cases. This leads to a 
different type of problems which we did not consider in this research. Thus, 
we assume that each job has certain tool requirements on each machine. 
These requirements are described by the tool-job "matrix" (akim), where 
akim = 1 if tool k (k = 1, ... , M) is used for job i (i = 1, ... , N) on machine 
m (m = 1, ... , V) and akim = 0 otherwise. We assume that each tool needs 
1 slot in the tool magazine, and that all machines have the same capacity 
C (the latter assumption is mostly for ease of notation, and can be easily 
removed). The job grouping problem is to find a partition of the jobs into a 
minimum number of groups, such that the jobs in each group do not require 
more tools on each machine than can be stored in the tool magazine of the 
machine. A set covering formulation (7.1) - (7.4) ofthe problem is still valid. 
The columns in the formulation represent the groups that are feasible on all 
machines. 

7.3.2 Lower bounds via column generation 

A lower bound can again be computed by solving the linear relaxation of the 
formulation (7.1) - (7.4) using a column generation approach. However, a 
different generation subproblem must now be solved in order to find columns 
that can improve the solution value of (7.5) - (7.7). Indeed, the restrictions 
(7.10) and (7.11) must be included for each machine (with Sk = 1 for all k), 
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thus leading to the following formulation of the generation subproblem: 

where 

N 

maximize LAiXi 
i=l 

subject to akimXi ~ Zkm 

M 

LZkm ~ C 
k=l 

Xi E {0,1} 

Zkm E {O, I} 

Xi = 1 
=0 

if job i is in group S, 
otherwise, 

for i = 1, ... , lV, and 

(7.14) 

i = 1, ... ,lVjk= 1, ... ,Alj 

m= 1, ... ,V, (7.15) 

m= 1, ... ,V, (7.16) 

i=l, ... ,lV, (7.17) 

k= 1, ... ,Aljm= 1, ... ,V, (7.18) 

Zkm = 1 
=0 

if tool k is required by some job in S on machine m, 
otherwise, 

for k = 1, ... , Alj m = 1, ... , V. As previously, we solve this subproblem by 
complete enumeration (see Section 6.2.3). The lower bounds LBFarley and 
LBcG are defined as in Section 6.2.4. 

7.3.3 Other lower bounds 

The sweeping procedure can be adjusted as described by Tang and Denardo 
(1988b). The concept of compatibility is changed for the "multiple ma
chines" case. Two jobs are compatible if they form a feasible group on all 
machines. A number of groups are sequentially created as follows. In each 
step ofthe procedure, first a job (seed) is selected which is compatible with 
the smallest number of other (not yet selected) jobs (in case of a tie the job, 
for which the set of compatible jobs requires the smallest number of tools on 
all machines is selected). Next, the seed along with all jobs which are com
patible with it, are selected to form one group. The procedure is repeated 
until all jobs have been selected. The number of groups so created, say L is 
a valid lower bound for the job grouping problem. We also have the trivial 
lower bound r AI j Cl. Combining this bound with L yields the lower bound 
LBsw =max{fAljCl,L}. 
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Another lower bound can be obtained in each step of the sweeping pro
cedure by summing the number of groups already created by the procedure 
and the lower bound maxmHI UiEI Timl/Cl}, where I is the set of "not yet 
selected" jobs, and Tim is the set of tools needed for job i on machine m. 
This procedure generates a sequence of valid lower bounds, the first of which 
is equal to rM/Cl and the last of which is equal to L. We refer to this pro
cedure as the "modified sweeping procedure". It yields a new lower bound, 
equal to the maximum of the bounds in the sequence, which we denote by 
LBMSW. 

7.3.4 Upper bounds 

The MIMU, MI, MU and Whitney and Gaul rules are changed by simply 
adjusting the definitions of the parameters bi and ti introduced in Section 
6.3.1. For a group S and a job i f/. S, !et 
bi = the sum over all machines of the number of tools required by job i 
ti = the sum over all machines of the number of tools required both by job 
i and by some job already in S. 
For the MIMU rule these changes have been described by Tang and Denardo 
(1988b). The Rajagopalan rule (resp. Modified Rajagopalan-rule) is changed 
similarly. For each machine m, each tool k receives a weight akm, defined 
as ak was for the one machine case. Next the priority of job i is calculated 
by summing the weights akm over all tools that must be added to the tool 
magazine of machine m (resp. over all tools needed for job i on machine 
m) when job i is assigned to the current group, and over all machines. Ra
jagopalan (1985) also assigns weights to the different machines, based on 
the ratio of the total number of tool slots needed for the jobs executed on 
the machine to the capacity of the tool magazine. We decided to use equal 
weights for all machines. The Marginal gain rule is defined as in the single 
machine case. For all sequential heuristics the selection of the first job in 
each group is also based on the cumulative measures mentioned above. All 
set covering heuristics can also be used as described in Section 6.3.2. 

7.3.5 Adjusting the column generation procedlJre 

The generation subproblem has become more complicated. However, due to 
our enumerative approach for solving the generation subproblem (see Section 
6.2.3), only straightforward adjustments to the procedure are needed. The 
column generation procedure is implemented as described in Section 7.2.5 
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(see also Section 6.4). 

7.3.6 Computational experiments 

We generated two sets of random instances. The first set was generated in 
the same way as the first set of Section 7.2.6. (and the first two sets of Sec
tion 6.5.1), except that all tools require just one slot in the tool magazine 
and each instance is described by V tool-job matrices. The values of M, N, C 
and V, describing each instance type, are given in Table 7.7. 

Problem size Cl C2 C3 V Min Max 
MxN 
10 x 10 4 5 7 3 1 3 
10 x 10 4 5 7 5 1 3 
15 x 20 8 10 12 -3 1 7 
15 x 20 8 10 12 5 1 7 
25 x 30 to 12 15 3 1 9 
25 x 30 10 12 15 5 1 9 
60 x 40 20 25 30 3 1 19 
60 x 40 20 25 30 5 1 19 

Table 7.7 Parameters of the first set of instances 

The second set (see Table 7.8) consists ofinstances which have a block struc
ture (that is, the tool requirements for subsets of jobs are interdependent) 
similar to the instances of the second dataset of Section 7.2.6. (or the third 
dataset of Section 6.5.1). 

Problem size Ct V Min Max Minjob Maxjob 
MxN 
30 x 30 15 3 5 8 4 7 
30 x 30 15 5 5 8 4 7 
40 x 40 20 3 7 10 5 8 
40 x 40 20 5 7 10 5 8 
50 x 50 25 3 8 12 6 10 
50 x 50 25 5 8 12 6 10 

Table 7.8 Parameters of the second set of instances 



162 Chapter 7 

For these instances, the jobs are divided from the start in a number of 
feasible subgroups. First, a number Nt is drawn uniformly between Minjob 
and Maxjob, and for each machine a subset of C tools is drawn. Then, 
the tool requirements on the different machines for the first Nt jobs are 
generated using the same procedure as in Section 6.5.1, that is, making sure 
that these jobs form a feasible group. When Nt jobs have been defined, 
then the procedure is iterated to produce N2 , N3 , ••• additional jobs. The 
process stops when it is not possible to create a new group with Maxjob 
jobs. The last columns are filled independently of each other as for the first 
set of instances. We considered two cases,' with resp. 3 and 5 machines (see 
Table 7.7 and Table 7.8). For each instance type 10 instances were created 
(Le. 30 or 50 tool-job matrices had to be generated for each instance type) 
for a total of 300 instances. 

7.3.7 Computational results 

For a description of the software and hardware used we refer to Section 
6.5.2. The results of tlre computational experiments are recorded in Tables 
7.9, 7.10, 7.11 and 7.12. The description of these tables is similar to that 
given in Section 7.2.7. (Table 7.9 (resp. 7.10, 7.11 and 7.12) corresponds to 
Table 7.3 (resp. 7.4, 7.5 and 7.6)). 

With the procedure sketched in Section 7.3.5. 296 out of 300 instances 
were solved to optimality. Another 2 instances were solved to optimality by 
using different parameters while for 2 instances a gap of one unit remained 
between the best lower bound LBcG and the best known upper bound on 
the solution value. 

Table 7.9 shows that the lower bounds LBsw and LBMSW are only 
sufficient for instances of type (M, N, Ct). The number of jobs in a group 
for these instances is extremely small (lor 2). Table 7.10 shows that the 
performance of the sequential heuristics gets worse for instances with larger 
capacities. The MI and the Modified Rajagopalan rules outperform the 
other rules, although the MIMU, Whitney and Gaul, MU and Marginal 
gain rules give reasonable results. For the instances of the second set the 
performance of the Rajagopalan and the Marginal gain rules is terrible; this 
is certainly due to the nature of these rules, which select jobs having few 
tools in common with the jobs already chosen in a group. The best heuristic 
solution is in general very good, but for instances of type (M, N, C3) the gap 
between heuristic and optimal solution value is often equal to 2 (see Table 
7.10, column 9). 
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Table 7.11 shows that nearly all instances of the first set (oftype (M, N, Ct» 
can be solved in Step I of the procedure. For the remaining instances opti
mality is reached in Step III in many cases (73 %). For 27 percent of the 
instances Step N is necessary. Table 7.11 shows that for 3 instances addi
tional variables of the last set covering formulation were forced to take 0-1 
values to obtain an optimal solution, while 2 instances could not be solved 
to optimality. For these instances the maximal gap between the lower bound 
LBcG and the best known upper bound amounts to 1.19. 

In Table 7.12 the computation times are given. It appears that only the 
instances of type (M, N, C 3) of the first set and the instances of the second set 
require much computational effort. But of course, these are the only really 
large ones (see column 6). Column 6 also shows that the instances of the 
first set are usually small. The instances of the second set are probably more 
realistic. The number of calls to LINDO was considerable for some of these 
instances (on average 8 - 19, but with peaks of 53). The number of columns 
in the set covering formulation peaked at 453 for the instances of the second 
dataset. For the 3-machine in~tances of type (M, N, C3 ) of the first set and 
the instances of the second set the column generation approach proved to be 
a helpful tool in decreasing the size of the set covering formulation. For the 
instances of the second set the number of maximal feasible columns increased 
by a factor 10 from instance type (30, 30, 15) to (50, 50, 25). The increases 
in computation time were similar, but the number of columns in the LP 
subproblems only grew by a factor of 3 to 4~. 
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Lowerbounds 
Instance type 

OPT LBsw LBMSW LBcG 
MxN C 1 2 3 4 

10 X 10 4 7.5 0.0 (10) 0.0 (10) 0(10) 
5 4.8 -1.9 (0) -1.3 (0) 0(10) 

V=3 7 3.0 -1.0 (0) -1.0 (0) o (10) 
10 X 10 4 9.1 0.0 (10) 0.0 (10) 0(10) 

5 5.0 -1.4 (0) -1.1 (1) 0(10) 
V=5 7 3.0 -1.0 (0) -1.0 (0) o (10) 

15 X 20 8 14.8 0.0 (10) 0.0 (10) o (10) 
10 7.6 -3.1 (0) -3.0 (0) o (10) 

V=3 12 4.8 -2.7 (0) -2.7 (0) o (10) 
15 X 20 8 18.4 0.0 (10) 0.0 (10) o (10) 

10 9.3 -3.0 (0) -2.8 (0) o (10) 
V=5 12 5.3 -3.2 (0) -3.2 (0) o (10) 

25 X 30 10 21.8 -0.3 (7) -0.2 (8) o (10) 
12 13.6 -2.7 (0) -2.6 (0) o (10) 

V=3 15 8.6 -6.2 (0) -5.8 (0) o (10) 
25 X 30 10 25.9 -0.1 (9) 0.0 (10) o (10) 

12 15.5 -2.2 (4) -2.0(4) 0(10) 
V=5 15 9.5 -6.7 (0) -6.3 (0) 0(10) 

60 X 40 20 29.2 -0.1 (0) -0.1 (9) o (10) 
25 17.1 -11.2 (0) -11.2 (0) o (10) 

V=3 30 12.2 -8.5 (0) -8.3 (0) o (10) 
60 X 40 20 35.5 -0.1 (9) -0.0 (10) o (10) 

25 19.8 -10.7 (0) -10.7 (0) o (10) 
V=5 30 13.8 -9.6 (0) -9.4 (0) o (10) 

30 X 30 V = 3 15 7.1 -5.1 (0) -5.0 (0) o (10) 
40 X 40 V = 3 20 7.9 -5.9 (0) -5.9 (0) o (10) 
50 X 50 V = 3 25 8.3 -6.3 (0) -6.3 (0) o (10) 
30 X 30 V = 5 15 7.4 -5.1 (0) -5.1 (0) 0(10) 
40 X 40 V = 5 20 7.9 -5.9 (0) -5.9 (0) ,0 (10) 
50 X 50 V = 5 25 8.5 -6.5 (0) -6.5 (0) o (10) 

Table 7.9 Quality of lower bounds 
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Upper bound. 

lns~ance ~yp. OPT MIMU MI MU Whi~. Raj ago- Mod. Marg. Be.~ 

+ Gaul pa.1an Raj. gain 
MXN 1 2 3 4 5 & 1 S 9 

10 x 10 4 1.5 0.0 (10! 0.0. (}~) 0.0, (}~) 0.0.(,10) 0.2 ~~~ 0.0, (}~) 0.0. (}O! 0.0, (}O) 
5 4.S 0.~/9;) 0.3m 0.4 (Sl) 0.3 (9) 0.& (&) 0.3 (9) 0.3 (9) o.~ lSi) V=3 1 3.0 0.0 10 0.1 9 0.0 (io 0.0 (iO) 0.2 (S) 0.0 (iO) 0.1 (9) 0.0 10 

10 x 10 4 9.1 0.0, (}O! 0.0, \}~) 0.0 (1~! 0.0, (}o,) 0.0, (}?,) 0.0. (}o,) 0.0, (}O) 0.0, (,I 0) 
5 5.0 0.4 (9) 0.5 (8) 0.3 (10) 0.4 (9) 0.& (1) 0.5 (S) 0.4 (9) 0.3 (1) 

V = 5 1 3.0 0.0 (iO) 0.0 (iO) 0.1 '(9) 0,.1 (9) 0.& (4) 0.0 (iO) 0.4 (&) 0.0 (iO) 
15 X 20 S 14.8 0.2, (}O) 0.2 ~1~1 0.4 ~~1 0.3. ~~l 0.3 ~~l 0.2 S~~l 0.4 S~l 0.2 S~l 

10 1.& 0.8 (8) 0.6 (10) 1.1 (5) 0.1 (9) 1.9 (0) 0.& (10) 1.& (2) 0.& (4) 
V - 3 12 4.8 0.5 (9) 0.5 (9]' 0.6 (8) 0.& (S) 1.S (2) 0.6 (S) 1.0 (4) 0.4 (5) 

15 x 20 8 18.4 0.2 \~~ O.q, (}~) 0.2 ~~~ 0.1 ~!~ 0.0, (,I?! 0.0. (}o,) 0.0, (}O! 0.0, (}O! 
10 9.3 O.S (6) 0.5 (9) 1.2 (3) 0.7 (7) 1.1 (3) 0.5 (9) 1.1 (5) 0.4 (5) 

V=5 12 5.3 0.9 (6) 0.8 (1) 1.1 (4) O.S (1) 1.8 0) 1.1 (4) 1.3 (3) 0.5 (5) 
25 X 30 10 21.S 0.3 ~~! 0.3 ~~l 0.& ~~l 0.41:1 0.1 

:~ 0.3 ~!1 0.3 ~~l 0.1 ~~1 
12 13.6 1.S (3) 1.2 (S) 2.0 (3) 1.& (5) 1.6 1.2 (8) 1.8 (3) 1.0 (2) 

V =3 15 8.6 1.2 (1) 1.1 (S) 1. 7 (3) 1.4 (5) 2.5 0) 1.4 (5) 2.0 (D) 0.9 (I) 
25 X 30 10 25.9 0.1 \9) 0.0, (}o,) 0.1 \;1 0.0 (10) 0.0 (10) 0.0, (}o,) 0.1 \~) 0.0, (}O! 

12 15.5 1.0 ~:~ ~:~m_ 1.1 (3) 0.9m O's·m 0.5m 1.2 m 0.4m 
V =5 15 9.5 1.6 6 1.9 (4) 1.5 7 3.0 0 1.5 6 2.4 a 1.1 1 

60 X 40 20 29.2 0.5 F) 0.3 ~~~ 0.6 (6) 0.3 (9) 0.4 (~~ 0.3 (~~ 0.4 ~S) 0.2 (9) 
25 11.1 2.4 ~~) 1. 7 (S) 3.2 (1) 2.7 (3) 1.9 (1) 1.8 (1) 2.3 (3) 1.5 (0) 

V =3 30 12.2 2.3 6) loS (iO) 2.9 io 2.2 (7) 2.9 (1) 1.9 (9) 2.8 (I) 1.8 (0) 
60 X 40 20 35.5 0.2 S!l 0.1 S~l 0.2 (~l 0.2 ~~l 0.1 ~~l 0.1 \~l 0.1 \~l 0.0,(,10) 

25 19.8 1.9 (1) 1.2 (6) 2.2 (1) 1.9 (2) 0.9 (9) 1.2 (6) 1.5 (4) 0.8 (3) 
V =5 30 13.8 2.5 (3) 1.9 (9) 2.S (2) 2.5 (3) 2.1 (2) 1.S (iO) 2.S (2) 1.S (0) 

30X30V-3 15 7.1 0.5 \~l 0.5 \~~ 0.7 (~~ 0.5 \!~ 5.4 \~l 0.4, \}~) 3.4 \~~ 0.4 E~ 
30x30V=3 20 7.9 0.4 (8) 0.4 (8) 0.4 (~l 0.5 (1) 1.9 (0) 0.4 ~~) 4.9 (0) 0.2 (S) 
40x40V=3 25 S.3 1.4 (4) 1.1 (1) 1.4 (4 1.2 (6) 9.5 (0) 0.9 9) 5.9 (0) 0.8 (3) 
40X40v-5 15 1.4 0.7 \!l 0.6 S~l 0.1 \!l 0.5.(,lo.} 6.8 ~~l 0.6 ~~1 4.0 ~~l 0.5 ~~l 
40x40V=5 20 1.9 0.7 (8) 0.6 (9) 0.7 (9) 0.7 (S) 9.5 (0) 0.6 (9) 4.6 (0) 0.5 (5) 
40X40V=5 25 S.5 1.0 (S) O.S (10) 1.0 (S) O.S (10) 10.3 (0) O.S_Lio) 5.9 (1) 0.8 (4) 

Table 7.10 Quality of upper bounds 
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Instance type II Slep I Slep II Slep III Slep III Slep IV Slep IV Gap 
lJ:£N (;'11 CG IP A B 

10 X 10 4 10 
5 8 2 

V-3 7 10 
10 X 10 4 10 

5 7 2 1 
V=5 7 10 

15 X 20 8 8 2 
10 4 4 2 

V-3 12 5 4 1 
15 X 20 8 10 

10 5 2 
2?1) 

1 
V-5 12 5 2 

25 X 30 10 7 2 1 
12 2 5 3 

V-3 15 1 1 7(1 ) 
25 X 30 10 10 

12 2 4 3 1 
V-5 15 1 9 

60 X 40 20 8 1 1 
25 6 4 

V-3 30 1 9 
60 X 40 20 10 

25 3 7 
V - 5 30 1 6 3 

30 X 30 V _ 3 15 7 2 1 
40 X 40 V = 3 20 8 2 
50 X 50 V - 3 25 3 6 1 
30 X 30 V _ 5 15 5 5 
40 X 40 V = 5 20 5 5 
50 X 50 V - 5 25 + 5 4 1 

II All Instances II 75 I 0 ( + 1) I 101 64 I 53 (2) I 3 2 II 

Table 7.11 Performance of different steps of the column generation 
procedure 
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7.4 Other extensions 

The extension of the job grouping problem to several non-identical machines 
is similar to the one described in Section 7.3. It is also possible to combine 
these changes for the case where jobs have to be processed on several non
identical machines with tools that require one or multiple slots in the tool 
magazines. 

Rajagopalan (1985) and Hwang and Shogan (1989) discuss the introduc
tion of due dates in the job grouping problem. Their models are sequential 
by nature and concentrate on finding one batch (optimal with respect to 
some "local" criterion) at a time. Due dates are incorporated by weighting 
jobs: jobs which have tight due dates receive larger weights and thus higher 
priority for being added to a next batch. By contrast the set covering formu
lation aims at finding a minimal number of groups, with no decisions taken 
on the order in which the groups have to be executed. Therefore the intro
duction of due dates does not fit very well into this formulation. Similarly, 
the introduction of order quantities or production times would change the 
nature of the formulation. Because we should decide on the order in which 
groups are executed, additional variables should be added to incorporate 
this information. A possible change in this direction is the introduction of 
separate weights for groups in different planning periods, where the weights 
depend on the planning period (each group (column) should be available 
in the formulation for each appropriate planning period). Additional con
straints must then be added to the set covering formulation to prohibit that 
more than one group be assigned to some planning period (or that a job 
be executed more than once). The introduction of due dates also requires 
the separate evaluation of small groups. Previously, we only had to consider 
groups that were maximal (groups for which it is not possible to add jobs 
without destroying feasibility). Now, we must explicitly consider all groups 
that are not maximal, because different costs are attached to these smaller 
groups (increases in setup time can be traded off against decreases in the 
number of jobs that are overdue). As a result, the size of the formulation 
grows sharply with the number of possible planning periods. This discus
sion shows that the set covering formulation is probably not the right tool 
to incorporate the introduction of due dates, production times and order 
quantities, and therefore we did not further investigate these extensions. 
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7.5 Summary and conclusions 

In this study, the results of Chapter 6 have been extended to some special 
cases of the job grouping problem. First, the job grouping problem was 
considered in the case where tools need more than one slot in the tool mag
azine. Next, the job grouping problem for several identical machines was 
investigated. Lower and upper bounds were derived for these extensions. A 
column generation approach was used to compute a lower bound. It appears 
that the lower bound obtained by computing the LP-relaxation value of the 
set covering formulation of the job grouping problem is very strong, though 
not always optimal. This is the case for both extensions studied. For 2 
percent of the instances tested, this lower bound was strictly smaller than 
the best upper bound (gap equal to 1). In our computational experiments, 
the "multiple slots" instances tend to be more difficult and the "multiple 
machines" instances tend to be easier than the instances studied in Chapter 
6. 
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Chapter 8 

A local search approach to 
job grouping 



8.1 Introduction 

In Chapters 6 and 7, lower and upper bounding procedures were proposed 
for the job grouping problem. It appeared that, in many cases, sequential 
heuristic procedures were not sufficlent to provide an optimal solution. A 
column generation approach was also developed to compute a strong lower 
bound, based on the linear relaxation of the set covering formulation of the 
job grouping problem. In the course of this procedure, it was sometimes 
possible to derive improved upper bounds. Notice, however, that solving 
the job grouping problem may be done faster if a better upper bound is 
known from the start. For instance, execution of the column generation 
procedure can be avoided if simple lower bounds like LBsw and LBMsw 
(see Chapters 6 and 7) are optimal and an optimal upper bound is also 
available. Alternatively, improved solutions provide additional columns to 
be included in the set covering formulation, which may speed up the column 
generation procedure. 

Local search procedures may provide such improved solutions. Loosely 
speaking, a local search procedure tries to improve the current solution of 
a problem by searching the neighbourhood of that solution for improved 
solutions, until no better solution can be found, optimality is achieved or 
the procedure is stopped according to some other criterion. In this chapter, 
we investigate four possible ways for searching the neighbourhood, namely a 
simple improvement approach, a tabu search approach, a simulated annealing 
approach and a variable-depth approach, based on ideas of Kernighan and 
Lin (1970). For each of these methods three different objective functions 
and two different neighbourhood structures are considered for two different 
types of starting solutions. The environment in which these methods are 
applied is discussed in the next section. Section 8.3 contains the description 
of the methods. The results of our computational experiments are reported 
in Section 8.4. In this study, we consider instances where tools require several 
slots and instances with several machines. Some conclusions are drawn in 
Section 8.5. 
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8.2 Local search environment 

Our objective is to partition the set of jobs into a minimal number of feasible 
groups, where a group is called feasible if the tools needed for the jobs in the 
group fit in the tool magazine of the machine(s). Our local search heuris
tics are designed to solve this problem indirectly, by answering a sequence of 
questions of the form: "Given a number g, is there a partition of the jobs into 
at most g feasible groups?". This approach is motivated by the observation, 
made in Chapters 6 and 7, that simple sequential heuristics provide good 
estimates for the optimal number of groups. For most instances tested the 
sequential heuristics provided a solution within 2 groups of the optimal solu
tion. Therefore, the local search procedure can be applied to find a solution 
which uses a number of groups equal to best known upper bound minus one. 
IT a feasible solution is found the procedure is repeated for a smaller number 
of groups. IT a solution is found with a!J.umber of groups equal to the lower 
bound the procedure ends. IT we are not able to find a feasible solution for 
the given number of groups, the procedure is started again with a different 
starting solution. Other stopping criteria can be added to avoid endless runs. 
In this section we will discuss the setting of different parameters that are 
important for the execution of the local search procedures. All procedures 
rely on the choice of a starting solution, an objective function f(G) which 
evaluates the 'quality' of each solution G (consisting of g groups of jobs), 
a neighbourhood structure defining what solutions are considered as neigh
bours or perturbations of a given solution, and a stopping criterion. Before 
discussing all these concepts in detail, we first present, for illustration, the 
structure of an unsophisticated local search procedure to which we will refer 
as the simple improvement approach. The other local search procedures can 
be seen as variants of this basic strategy. 



Section 8.2 175 

Simple improvement approach (for finding a partition into g feasible 
groups). 

(Initialization) find a starting solution, i.e. a partition G = {GI, G2, ... , Gg } 

(Improve) while G is not feasible and the stopping criterion is not satisfied 
do 
begin 

end 

select a neighbour of G, say G', which minimizes I(G') among 
all neighbours; 
if I( G') ~ I( G) and G' is not feasible 
then return FAIL (G is an infeasible local optimum) 
else let G := G' 

(Termination) if G is feasible 
then return G 
else return FAIL (stopping criterion satisfied) 

8.2.1 Starting solution 

A local search procedure starts from a given partition of the jobs into 9 
groups. This partition does not have to be feasible (if it is, we can stop the 
local search procedure for this number of groups). In our implementation we 
used two types of starting solutions, viz. the Maximal Intersection solution 
and a random starting solution. The Maximal Intersection (MI) starting 
solution is created using the Maximal Intersection rule for job grouping (see 
Sections 6.3.1,7.2.4 and 7.3.4). Remember that this rule sequentially creates 
a number of groups. Here, we run the procedure until 9 feasible groups are 
formed. Then, the remaining jobs (that are npt (yet) assigned to some group) 
are distributed to the already created groups. This is done in a greedy way. 
The jobs are assigned to one of the 9 groups in an arbitrary order, so that the 
sum of the violations of the tool magazine capacity constraint of the groups 
is minimized in each step (see next section). A random starting solution is 
created by assigning jobs randomly to 9 different groups. Some experiments 
were carried out using another structured starting solution (based on the 
Modified Rajagopalan rule, see Sections 6.3.1, 7.2.4 and 7.3.4), but these 
experiments offered no improvement over the MI starting solution. The MI 
starting solution was eventually preferred because the overall performance 
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of the MI rule was better for the job grouping problem (see Chapters 6 and 
7). 

8.2.2 Objective function 

We used one of several measures to judge the quality of a partition of the 
jobs in a given number of groups. 

• Minimize violations 
The violation v( G) of a group G of jobs is defined as the difference 
between the number of slots needed for the jobs in G and the capacity 
of the tool magazine, if this difference is positive. The violation is zero 
if the tools fit in the tool magazine. The value of our first objective 
function is the sum of the violations of the groups. In case of several 
machines, we consider the sum .pf the violations' over all machines. 
More precisely, define 
C = capacity of the tool magazine, 
V = number of machines, 
Tim = collection of tools necessary for job i on machine m, 
Sk = number of slots necessary for tool k, 
G = collection of groups (G= {Gt,G2 , ••• ,Gg }), 

v(Gj) = violation of group Gj. Then the violation of group Gj( E G) is 
v(Gj) = E~=l max {O,EkE{UieGjTim}Sk-C}. The objective function 
to be minimized is h(G) = EGjEGv(Gj). A feasible solution is found 
if the objective function is equal to 0. This approach is derived from 
the approach of Chams, Hertz and de Werra (1987) for graph coloring. 

• Minimize violations & maximize slack 
Instead of only considering the violations, this objective function also 
takes into account the slack-capacity (Le. the number of unused tool 
slots) in a group. It can be improved by increasing the slackcapacity in 
a group. IT 8j is the slack ( 8j = E~=l max {O, C - EkE{UieG .Tim} Sk} 

J 

in a group Gj E G, then the objective function to be minimized is 
h(G) = EGjEG(C· v(Gj) - 8j). 

• Maximize groupsize & minimize violations This objective function is 
inspired from the objective function of Johnson, Aragon, McGeoch and 
Schevon (1991) for graph coloring. The objective function is h(G) = 
- EGjEG IGjI2+2EGjEG IGjl·v(Gj). When minimizing this function, 
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the first term tends to favour large groups, whereas the second term 
favours feasible groups. 

8.2.3N eighbourhood structure 

The neighbourhood structure defines the set of feasible moves from a certain 
solution. We studied two different neighbourhood structures: 

• Move and exchange Given a solution, a neighbour solution is created 
by moving some job to another group or by exchanging two jobs. All 
possible moves and exchanges are considered in each iteration. To 
find a best move or exchange we visit all jobs consecutively. First, all 
possible moves for a job are considered. Then, all pairwise exchanges 
of the job with jobs in other groups are investigated. The best of these 
moves and exchanges is selected . 

• Move Given a solution, a neighbour solution is created by moving some 
job to another group. We consider all moves for all jobs and select the 
best one. Compared to the first neighbourhood structure, the pairwise 
exchanges are not considered. 

It is clear that the first neighbourhood structure uses more computation 
time per iteration than the other neighbourhood structure. On the other 
hand, the number of iterations to reach optimality will be decisive for the 
actual computational effort. In some procedures, the neighbourhood struc
ture will be restricted by disallowing some moves or exchanges (see Section 
8.3 on tabu-lists). 

8.2A Stopping criteria 

The local search procedure stops if feasibility is achieved or the computation 
time limit is reached. Use of a computation time limit is necessary to prevent 
some local search procedures from running endlessly. At the end of each 
step the solution is checked for feasibility since the values of the second 
and the third objective function give no conclusive evidence of feasibility of 
the solution. For some local search approaches (viz. the simple improvement 
and the variable-depth approaches, see Section 8.3) the procedure is stopped 
when no improvements are possible any more (the tabu search always has the 
possibility to leave a local optimum, while the simulated annealing approach 
only stops if repeatedly no suitable neighbour solution can be found after a 
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large number of trials; see Section 8.3.3). For randomly generated starting 
solutions an additional stopping criterion is added to allow testing of several 
starting solutions within a fixed amount of computation time. Namely, only 
a maximal number of steps can be performed from each starting solution, 
after which the procedure is restarted with a new random starting solution 
(here, a step is defined as a transition from one solution to another). In 
our implementation the procedure was restarted after 3N steps, where N is 
the number of jobs. This type of restart is not used with the MI starting 
solution, which thus can use the full amount of computation time. 

8.3 Local search approaches 

Four different approaches have been considered. The simple improvement 
approach only considers those moves which improve the solution at hand. 
The second approach (tabu search) also accepts moves that give a deterio
ration of the objective function. The third approach (simulated annealing) 
introduces a stochastic element in accepting moves that worsen the objective 
function value. In the fourth approach, ideas of Kernighan and Lin (1970) 
are implemented. 

8.3.1 Simple improvement approach 

This approach has been formally described in Section 8.2. Given the neigh
bourhood structure and the objective function, a move is accepted only if 
it improves the objective function. If it is not possible to find an improve
ment after all possible moves and/or exchanges have been considered the 
procedure stops. 

8.3.2 Tabu search approach 

The simple improvement approach follows a so-called hill climbing (or better 
valley seeking) approach for finding an optimum. The chances that the pro
cedure gets stuck in a local optimum using the simple improvement approach 
are considerable. To overcome this difficulty, the tabu search approach allows 
moves that worsen the solution value. The idea is that accepting a number 
of 'bad' moves may open up possibilities to move to another (better) lo
cal optimum. The approach has achieved impressive practical successes for 
other combinatorial problems; for a thorough discussion we refer to Glover 
(1989; 1990). When it is not possible to find an improved solution among 
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the neighbours of the current one, a move is chosen that is the best among 
the 'bad' moves, that is a move that has the least impact on the value of the 
objective function. To avoid returning to a recent local optimum a tabu-list 
is used. More precisely, in our implementation, the tabu-list contains a list 
of jobs that are not allowed to be transferred to another group. The tabu-list 
may also contain a list of specified moves (in which explicitly the job, the old 
and the new group are recorded) that are not allowed, but preliminary tests 
showed no improvement over the current choice. We use a tabu-list oflength 
7, which means that the last seven jobs that have been moved (in steps where 
the objective function deteriorated) may not be moved again (preliminary 
tests with a tabu-list of variable length - equal to !N, where N is the total 
number of jobs - led to a significant deterioration of the performance of the 
procedure). A move remains tabu only during a certain number ofiterations, 
so that we have a cyclical list where the oldest forbidden move (or job) is 
removed whenever a new forbidden move (or job) is added. The procedure 
stops when a feasible solution is obtained or the computation time limit is 
reached. To improve the performance of the procedure the concept of aspi
ration levels is introduced (see Glover (1989». This offers the possibility of 
overriding the tabu status of a job (or move) on the tabu-list if the solution 
value which can be obtained by accepting this particular move is strictly 
smaller than the best known solution value. 

8.3.3 Simulated annealing approach 

Simulated annealing extends the simple improvement approach by allowing 
uphill moves during the minimization process, as in the tabu search approach 
(for a discussion on simulated annealing we refer to Van Laarhoven and 
Aarts (1987) and Johnson, Aragon, McGeoch and Schevon (1989; 1991». 
However, the procedure of accepting uphill moves is randomized. If a move 
or exchange is selected in an iteration and this move offers an improvement 
of the objective function, the move is accepted. If it offers an increase of 
the objective function by Ll, then the move is accepted with a probability of 
e-A / T • The parameter T is· referred to as temperature and is an important 
factor in the decision to accept uphill moves. If the temperature T is large, 
the possibility of accepting 'bad' moves is large. Therefore, the temperature 
is gradually decreased in the course of the procedure ('annealing'). The 
behaviour of a simulated annealing implementation may be largely influenced 
by the setting of certain parameters, like the initial temperature and the 
cooling schedule. We used some suggestions of Johnson et al. (1989; 1991) 



180 Chapter 8 

in our choices for these parameters; these are now as follows. At the start 
of the simulated annealing procedure T is fixed to some value Tstart = 4. 
A number of iterations is carried out using this temperature. After maxiter 
iterations have been performed at a certain temperature, the temperature 
is decreased. The parameter maxiter is chosen proportional to the number 
of jobs (N), viz. maxiter = 3N. The temperature T is decreased using 
geometric cooling (the temperature in a next step is 95 % of the current 
temperature). To limit the time spent at high temperatures we introduce a 
parameter cutoff (= 0.3). This parameter makes sure that the temperature 
T is decreased if too many moves are accepted. Thus, the temperature 
is decreased either after maxiter moves or after cutoff X maxiter accepted 
moves. Finally a parameter minpercent (= 2 %) is used as follows to decide 
whether a simulated annealing run can be stopped. A counter is incremented 
after each temperature change, if less than minpercent of the selected moves 
have been accepted since the previous temperature change. The counter is 
reset to 0 whenever the current best solution is improved. If the counter 
reaches 5, the process is declared frozen and stopped (see Johnson et al. 
(1989)). The procedure also stops if the computation time limit is reached. 
Finally, we introduced a tabu-list to avoid the possibility of returning too 
fast to an already visited local optimum. This tabu-list was implemented as 
in the tabu search approach (see Section 8.3.2). 

8.3.4 Variable-depth approach 

Kernighan and Lin (1970) proposed an effective heuristic algorithm for the 
graph partitioning problem. We use an idea similar to theirs. Each iteration 
of our procedure consists of a number of steps. In each step, a move or 
exchange is performed (the best one according to the given objective func
tion and neighbourhood structure), and the jobs involved are placed on a 
tabu-list of length N. After a number of steps, when all N jobs have been 
moved once (and placed on the tabu-list), a sequence of solutions has been 
obtained. From this sequence the best solution is chosen and a next iteration 
is performed starting from this solution. At the start of each new iteration 
all jobs are removed from the tabu-list (the tabu-list is emptied). The pro
cedure is repeated until no improved solution can be found in an iteration 
or the maximum amount of computation time is used. 
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8.4 Computational experiments 

Considering all combinations of two starting solutions, three objective func
tions, two different neighbourhood structures and four local search approaches, 
we get 48 possible implementations for a local search procedure (if we do 
not vary the other parameters). In this section we first make a selection 
among these methods, and then discuss the results of our computational 
experiments with the 'best' ones. 

8.4.1 The dataset 

Computational experiments were performed on a set of problem instances 
which emerged from the research described in Chapters 6 and 7. In these 
chapters, computational experiments were performed on a large set of ran
domly generated data (see Sections 6.6, 7.2_.7 and 7.3.7). From this set, we 
selected a subset of instances for which the upper bounds computed by the 
sequential heuristics were not optimal (it is clear that this is not a random 
selection from the whole set of problems since all relatively easy instances 
were left out). The smallest instances were also discarded and, for each in
stance type (M,N,C) (where M is the number oftools, N is the number of 
jobs and C is the capacity of the tool magazine), at most 5 problems were 
retained. We investigated three types of instances: 

• single slot, single machine instances, 

• multiple slot, single machine instances, 

• single slot, multiple machine instances. 

The dataset we used is described in Table 8.1. In each row the parame
ters for each instance type (M, N, C) are given: M, N, C, the number of 
instances tested, the number of machines and the size of the tools. The up
per part of Table 8.1 contains 45 instances of the single slot, single machine 
type (dataset 1). Then, 46 instances are described where tool sizes are tool
dependent (dataset 2). The last 54 instances are of the single slot, multiple 
machine type (dataset 3A and 3B). The sequential heuristics provided solu
tions close to optimality for all these instances (gap between upper bound 
and optimal solution is 1 or 2). Therefore, we tested all our local search 
heuristics by asking the question: "Is there a feasible solution involving ex
actly OPT groups?", where OPT was the optimal value of the instance at 
hand. 
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Dataset Problem size C Number of Number of Number of 
MxN instances machines slots per tool 

single 10 X 10 4 5 1 1 
slot 15 x 20 8 5 1 1 

single 20 x 30 10 5 1 1 
machine 25 x 30 10 5 1 1 
dataset 1 40 x 30 25 5 1 1 

60 x 40 30 5 1 1 
40 x 40 20 5 1 1 
50 x 50 25 5 1 1 
60 x 60 30 5 1 1 

multiple 15 x 20 13,15 5 1 1,2,3 
slots 15 x 20 13,15 5 1 1,3 

single 25 x 30 20 5 1 1,2,3 
machine 25 X 30 25 4 1 1,3 
dataset 2 60 x 40 40 5 1 1,2,3 

60 x 40 45 5 1 1,3 
30 x 30 20 3 1 1,2,3 
30 x 30 20 5 1 1,3 
40 x 40 30 4 1 1,2,3 
40 x 40 30 5 1 1,3 

single slot 15 x 20 12 4 3 1 
3 machines 25 x 30 15 5 3 1 
dataset 3A 60 x 40 30 5 3 1 

30 x 30 15 3 3 1 
40 x 40 20 2 3 1 
50 x 50 25 5 3 1 

single slot 15 X 20 12 5 5 1 
5 machines 25 x 30 15 5 5 1 
dataset 3B 60 x 40 30 5 5 1 

30 x 30 15 5 5 1 
40 x 40 20 5 5 1 
50 x 50 25 5 5 1 

Table 8.1 Dataset local search 
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8.4.2 Computational results 

The local search procedures were implemented in Turbo Pascal and run 
on an AT personal computer with 16 MHz 80386sx processor and 80387 
mathematical coprocessor (except for the results of Table 8.4; see below for 
details). 

The computational experiments were performed as follows. First, ex
tensive computational experiments were performed on the first dataset for 
a wide variety of implementations. The results of a number of approaches 
that performed relatively well are presented in Table 8.2. For this selection 
of approaches, additional experiments were performed on the instances of 
the second and the third datasets (for the "multiple slots" and the "multiple 
machines" instances). 

The experiments on the first dataset were carried out with a 600 seconds 
limit on the computation time. Each instance was tested for a given start
ing solution, objective function, neighbourhood structure and local search 
approach. When a random starting solution was used a number of restarts 
was allowed within the given time period of 600 seconds (see Section 8.2.4). 

Early tests showed that the simple improvement approach was dominated 
strongly by the other local search approaches, and, therefore we did not 
consider this approach any further. The lack of good results for this strategy 
is probably due to the fact that the objective functions are such that the 
possibility of getting stuck in local optima (minima) is indeed large if no 
uphill moves are allowed. 

The results for the other three local search approaches (Le. tabu search, 
simulated annealing, variable-depth) did not diverge too much for a given 
starting solution, objective function and neighbourhood structure. Table 8.2 
gives the results of the computational experiments for the tabu search ap
proach using the objective functions h(G),h(G),/a(G) defined in Section 
8.2.2 and the neighbourhood structures "move and exchange" and "move" 
described in Section 8.2.3. The second column of Table 8.2 indicates the 
number ofinstances tested for each instance type (M, N) (5 for all instance 
types). Each entry of the table consists in a pair" A - B", where A describes 
the number of instances for which an optimal solution was found using the 
MI starting solution and B describes the number of instances that was solved 
using a random starting solution (possibly with multiple starts). The bot
tom line of the table gives the cumulative results. 
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Problem size # Move and exchange Move 
MxN obj.1 obj.2 obj.3 obj.1 obj.2 obj.3 

10 X 10 5 5-5 5-5 5-5 5-5 5-5 5-5 
15 X 20 5 5-5 5-5 4-5 5-5 5-5 4-4 
20 X 30 5 4-2 4-3 4-2 2-3 3-2 4-2 
25 X 30 5 1-1 2-1 1-0 0-1 1-3 1-1 
40 X 30 5 5-4 4-5 5-3 3-3 3-4 2-2 
60 X 40 5 2-1 3-3 2-0 1-0 1-2 1-0 
40 X 40 5 2-1 3-3 3-4 0-1 2-3 3-2 
50 X 50 5 4-0 5-0 3-0 5-1 5-2 4-4 
60 X 60 5 2-0 5-0 3-0 3-0 4-0 4-4 

Total 45 30-19 36-25 30-19 24-19 29-26 28-24 

Table 8.2 Results dataset 1: tabu search 

The first two rows show that nearly all smaller instances can be solved by 
the tabu search approach, independently of the neighbourhood structure or 
the objective function. However, the results diverge for larger instances. 
It appears that the use of a MI starting solution gives better results than 
the implementation using a random starting solution. We come back to this 
issue in the discussion of Table 8.4. The second objective function, including 
the slacks, usually leads to the best results (an impression also confirmed by 
our other experiments). The "move" neighbourhood provides slightly better 
results than the "move and exchange" neighbourhood. This may be due to 
the fact that the latter neighbourhood is computationally more expensive 
to explore and can. perform fewer steps within a fixed time period. The 
results show that even large instances can be solved to optimality using a 
tabu search approach. 

The trends discussed above for the tabu search approach have also been 
observed for the simulated annealing and the variable-depth approach. We 
do not give complete results for these two approaches, but limit ourselves 
to some brief comments. The results of the simulated annealing approach, 
though sometimes different for individual instances, are on average com
parable to the tabu search results. The performance of the variable-depth 
approach is somewhat weaker (especially for objective functions ft(G) and 
h(G)), which may be due to the absolute stopping criterion used (see Sec
tions 8.2.4 and 8.3.4). As an illustration of these comparisons, Table 8.3 
reports on the results obtained by the three approaches on the first dataset, 
when the objective function h( G) is used. 
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Problem size # Tabu search Simulated Variable-
MxN Annealing depth 

10 x 10 5 5-5 5-5 5-5 
15 x 20 5 5-5 5-5 3-5 
20 x 30 5 4-3 4-1 5-3 
25 x 30 5 2-1 2-1 2-1 
40 x 30 5 4-5 4-5 3-5 
60 x 40 5 3-3 3-2 3-3 
40 x 40 5 3-3 3-3 4-2 
50 x 50 5 5-0 5-0 5-0 
60 x 60 5 5-0 5~0 5-0 

Total 45 36-25 36-22 35-24 

Table 8.3 Selected results dataset 1 

From these preliminary experiments, it appears that the objective function 
h(G) combined with the "move" neighbourhood provides the best results. 
For the variable-depth approach the more elaborate "move and exchange" 
neighbourhood provides better results, which may again be related to the 
influence of the stopping criterion (the time limit criterion is not often the 
reason to cut off the variable-depth search). In the remainder of this section 
we limit Qurselves to the discussion of the objective function h( G) combined 
with the "move and exchange" or the "move" neighbourhood. 

Table 8.4 displays the influence of computation time when using a ran
dom starting solution within the tabu search framework, with the "move" 
neighbourhood structure. Of course, we expect the tabu search approach to 
give better results if the time limit is increased, but the extent of improve
ment is not clear. These experiments were run on a faster computer (with 25 
Mhz 80386 processor), approximately twice as fast as the previous one. For 
each instance type (M, N), 5 instances were tested, and for each instance 
25 random starting solutions were considered. Each column of Table 8.4 
records the number of times (maximal 125) that an optimal solution was 
obtained within the given time limit (resp. 1, 5, 15, 30, 60, 150, 300, 450 
and 600 seconds). 

The instances are roughly arranged by increasing size and the zeros in 
the lower diagonal part of Table 8.4 speak for themselves. Table 8.4 shows 
that the largest instances are indeed hard to solve using a random starting 
solution, especially if this performance is compared to the results using a 
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MI starting solution (see Table 8.2 for the occurrence of optimality within 
600 seconds on the slower <.:omputer). One may consider these computation 
times as very high, compared to the time it takes to solve similar instances to 
optimality (see Table 6.6, Chapter 6). These experiments were also carried 
out for the simulated annealing approach, with comparable results. 

Problem size # II Cumulative # of instances solved to optimalty after 
MxN 1115 s 30 s 60 s 150 s 300 s 450 s 600 s 

10 x 10 5 125 125 125 125 125 125 125 
15 x 20 5 41 83 97 104 107 109 110 
20 x 30 5 0 0 16 59 73 75 78 
25 x 30 5 1 1 8 34 48 50 55 
40 x 30 5 0 2 43 107 118 122 122 
60 x 40 5 0 0 0 2 64 77 84 
40 x 40 5 0 0 0 22 79 85 93 
50 x 50 5 0 0 0 0 8 54 97 
60 x 60 5 0 0 0 0 0 0 1 

Table 8.4 Results tabu search with random starting solution 

In Tables 8.5 and 8.6, a further comparison is made between the three lo
cal search approaches for the "multiple slots" and the "multiple machines" 
instances. As mentioned before, we choose to present the results of imple
mentations using the superior objective function h( G). Tests with the other 
objective functions yield results that are in general worse than the results 
obtained for this objective function, as previously illustrated in Table 8.2. 

Table 8.5 displays the results for the "multiple slots" case (dataset 2). 
In the third column of Table 8.5 the size of the tools is given. Because the 
"multiple slots" instances are expected to be harder (see Chapter 7), the 
time limit is increased from 600 to 900 seconds (on the 'slower' computer). 
Objective function h( G) combined with the "move" neighbourhood struc
ture form the best parameter set for the "multiple slots" instances. The 
results obtained with a random starting solution are similar to those using 
the MI starting solution if the tabu search or simulated annealing approach 
is used. However, if the time limit stopping criterion is decreased from 900 to 
600 seconds, the results for the random starting solution deterio- rate much 
faster than for the MI starting solution. The total scores for the "move and 
exchange" neighbourhood change from 33 - 29,33 - 35 and 22 -27 (see last 
line of Table 8.5) to 33 - 24, 32 - 25, 22 - 25 if the time limit is set to 600 
seconds. The influence of a time limit reduction is also present (though less 
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significantly) in case of the "move" neighbourhood. Thus, it seems that the 
relatively good results for the random starting solution are related to the 
large time limit. 

Problem size # . Sk E Tabu search Simulated Variable-
MxN Annealing depth 

15 x 20 5 1,2,3 4-5 4-5 2-5 
15 x 20 5 1,3 4-5 4-5 3-5 
25 x 30 5 1,2,3 2-2 2-4 3-3 
25 x 30 4 1,3 4-3 4-2 1-3 
60 x 40 5 1,2,3 3-2 3-3 3-2 
60 x 40 5 1,3 4-5 4-5 3-4 
30 x 30 3 1,2,3 2-2 2-2 1-2 
30 x 30 5 1,3 3-4 3-4 2-2 
40 x 40 4 1,2,3 4-1 4-3 3-1 
40 x 40 5 1,3 3-0 3-2 1-0 

Total 46 33-29 33-35 22-27 

Table 8.5 Results dataset 2 

Table 8.5 also shows that the time limit of 900 seconds is probably not 
enough for the largest instances in case of a random starting solution. The 
performance of the variable-depth approach is systematically worse than 
that of the other approaches if a MI starting solution is used. This may 
be partly explained by the stronger stopping criterion adopted (12 out of 
24 (resp. 28 out of 29) unsolved instances for the variable-depth approach 
using a "move and exchange" (resp. "move") neighbourhood structure were 
stopped before the computation time limit was reached). The influence of 
the stopping criterion is largely decreased in case multiple random starts 
are used. The results for the variable-depth approach are comparable to the 
other results if a random starting solution is employed. 

Table 8.6 records the results for the "multiple machines" instances (datasets 
3 A & B). The computations were performed using a 900 seconds time limit 
(in Chapter 7 it is shown that these instances are probably easier than those 
ofthe second dataset; however, in each step ofthe local search approach more 
function evaluations have to be made). The upper (resp. lower) part of Ta
ble 8.6 presents results on "3 machines" (resp. "5 machines") instances. The 
tabu search and simulated annealing approaches give similar results, with 



188 Chapter 8 

the variable-depth approach trailing behind. The tests using a MI starting 
solution were more successful than those using a random starting solution, 
which may indicate that the time limit was too low for randomly generated 
starting solutions (compare with the results presented in Table 8.4). Nearly 
all structured instances (of sizes (30, 30), (40,40) and (50, 50)) were solved 
to optimality when a MI starting solution was used. The results were better 
for the "moye and exchange" neighbourhood structure than for the "move" 
neighbourhood structure in case a MI starting solution was used. For random 
starting solutions the more time-efficient "move" neighbourhood structure 
was more appropriate. 

Problem size # V Tabu search Simulated Variable-
MxN Annealing depth 

15 X 20 4 3 4-4 4-4 4-4 
25 X 30 5 3 3-4 3-4 3-3 
60x 40 5 3 2-1 2-0 1-1 
30 X 30 3 3 3-3 3-3 2-3 
40 X 40 2 3 2-0 2-1 2-0 
50 X 50 5 3 5-0 5-0 5-0 
15 X 20 5 5 5-5 5-4 3-3 
25 X 30 5 5 4-4 4-4 1-2 
60 X 40 5 5 0-0 0-0 0-0 
30 X 30 5 5 5-5 5-5 5-5 
40 X 40 5 5 5-0 5-0 5-0 
50 X 50 5 5 4-0 4-0 4-0 

Total 54 42-26 42-25 35-21 

Table 8.6 Selected results dataset 3A and 3B 

8.5 Summary and conclusions 

In this chapter, we investigated the use oflocal search approaches to improve 
the solution for the job grouping problem. Four local search approaches were 
considered, namely simple improvement, tabu search, simulated annealing 
and the variable-depth approach; for each of these methods, several starting 
solutions, objective functions, neighbourhood structures and stopping crite
ria were tested. Computational experiments using three sets of data seem to 
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indicate that the latter choices considerably influence the performance of the 
different approaches, while the influence of the specific local search approach 
seems less serious as long as some kind of local optimum evading procedure is 
used. The opportunity to leave local optima is particularly important given 
the rigidity of some objective functions. 

The differences in performance of the tabu search, simulated annealing 
and variable-depth approach are relatively small for the job grouping prob
lem. In some cases the results for the variable-depth approach are a bit 
disappointing, but this may be partly related to the stopping criteria used 
(that is, the variable-depth approach does not always benefit from additional 
computation time as the other two approaches do). Local search approaches 
are well known for their extensive use of computation time and, in this 
study, they live up to this expectation. However, initial solutions are some
times improved in a limited amount of time, especially for smaller instances. 
The MI starting solution outperforms the random starting solutions in most 
cases. Since the MI starting solution can be quickly obtained, we find it 
advisable to use it as a starting point. The objective function h( G), which 
combines minimizing the number of violations with increasing the slack in 
groups that have spare capacity, seems to be the most adequate objective 
function. Combined with either of the neighbourhood structures "move and 
exchange" or "move", it provided good results for all three datasets con
sidered. In conclusion, the experiments with local search approaches show 
that these approaches can be helpful in finding improved solutions for the 
job grouping problem. One important application coUld be the use of these 
methods for improving the initial set covering formulation of the job group
ing problem by a column generation approach, as described in Chapters 6 
and 7. 



Chapter 9 

Minimizing the number of 
tool switches on a flexible 
machine 



9.1 Introduction 

A central problem of tool management for flexible machines is to decide 
how to sequence the parts to be produced, and what tools to allocate to 
the machine, in order to minimize the number of tool setups. The prob~ 
lem becomes especially crucial when the time needed to change a tool is 
significant with respect to the processing times of the parts, or when many 
small batches of different parts must be processed in succession. These phe
nomena have been observed in the metal-working industry by Hirabayashi, 
Suzuki and Tsuchiya (1984), Finke and Kusiak (1987), Bard (1988), Tang 
and Denardo (1988a), Bard and Feo (1989), etc. Blazewicz, Finke, Haupt 
and Schmidt (1988) describe for instance an NC-forging machine equipped 
with two tool magazines, each of which can handle eight tools. The tools 
are very heavy, and exchanging them requires a sizeable fraction of the ac
tual forging time. Another situation where minimizing the number of tool 
setups may be important is described by FOrster and Hirt (1989, p. 109). 
These authors mention that, when the tool transportation system is used 
by several machines, there is a distinct possibility that this system becomes 
overloaded. Then, minimizing the number of tool setups can be viewed as 
a way to reduce the strain on the tool transportation system. Bard (1988) 
mentions yet another occurrence of the same problem in the electronics in
dustry. Suppose several types of printed circuit boards (PCBs) are produced 
by an automated placement machine (or a line of such machines). For each 
type of PCB, a certain collection of component feeders must be placed on the 
machine before boards of that type can be produced. As the machine can 
only hold a limited number of feeders, it is usually necessary to replace some 
feeders when switching from the production of one type of boards to that of 
another type. Exchanging feeders is a time-comsuming operation and it is 
therefore important to determine a production sequence for the board types 
which minimizes the number of "feeder-setups". Identifying the feeders with 
tools, we see that this constitutes again an instance of the "job-sequencing 
and tool loading" problem evoked above. 

This chapter deals with a particular formulation of this problem, due to 
Bard (1988) and Tang and Denardo (1988a). Suppose that a batch of N 
jobs have to be successively processed, one at a time, on a single flexible 
machine. Each job requires a subset of tools, which have to be placed in the 
tool magazine of the machine before the job can be processed. The number 
of tools needed to produce all the jobs in the batch is denoted by M. We 
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represent these data by an M X N tool-job matrix A, with: 

aij = 1 if job j requires tool i, 
= 0 otherwise, 

Chapter 9 

for i = 1,2, ... , M and j = 1,2, ... , N. Without loss of generality, A has no 
zero row. The tool magazine has a limited capacity: it can accommodate 
at most C tools, each of which fits in one slot of the magazine. To ensure 
feasibility of the problem, we assume that no job requires more than C 
tools. We also assume that, while the jobs are in process, the tool magazine 
is always loaded at full capacity (as will explained below, this is in fact a 
non-restrictive assumption for our problem). We thus call any subset of C 
tools a loading of the magazine. 

A job sequence is a permutation of {I, 2, ... , N}, or, equivalently, of the 
columns of A. As the number of tools needed to produce all jobs is generally 
larger than the capacity of the tool magazine (Le., M > C), it is sometimes 
necessary to change tools between two jobs in a sequence. When this occurs, 
one or more tools are removed from the tool magazine and are replaced by 
a same number of tools retrieved from a storage area. We call setup the 
insertion of a tool in the magazine. A switch is the combination of a tool 
setup and a tool removal. Since each tool has to be set up at least once in 
order to process the whole batch of jobs, we will also pay attention to the 
extra setups of a tool, that is, to all setups of the tool other than the first 
one. 

The tool switching problem is now defined as follows: determine a job 
sequence and an associated sequence of loadings for the tool magazine, such 
that all tools required by the j-th job are present in the j-th loading, and 
the total number of tool switches is minimized. In matrix terms, the tool 
switching problem translates as follows: determine an M X N 0 - 1 matrix 
P = (Pkj), obtained by permuting the columns of A according to a given 
job sequence, and an M X N 0 - 1 matrix T = (tkj) containing C ones per 
column (each column of T represents a tool loading), such that tkj = 1 if 
Pkj = 1 (Le., tool k is placed in the j-th loading if it is needed for the j-th 
job in the sequence; k = 1, .. . M; j = 1, ... , N), and the following quantity 
is minimized: 

N M 
L L(1- tk,j-l)' tkj 
j=2 k=l 

(this quantity is exactly the number of switches required for the loading 
sequence represented by T). Observe that minimizing the number of tool 
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switches is equivalent to minimizing the number of setups or of extra setups, 
since the following relations hold: 

number of setups = number of switches + C 
= number of extra setups + M. 

Let us now briefly discuss some of the (explicit and implicit) assumptions of 
the tool switching model. 

(1) As mentioned before, the assumption that the t()ol magazine is always 
fully loaded does not affect the generality of the model. Indeed, since 
no cost is incurred for tools staying in the magazine, one may consider 
that the first C tools to be used are all incorporated in the very first 
loading; thereafter, a tool only needs to be removed when it is replaced 
by another one. 

(2) Each tool is assumed to fit in one slot C?f the magazine. Removing this 
assumption would create considerable difficulties. For instance the 
physical location of the tools in the magazine would then become rele
vant, since adjacent slots would need to be freed in order to introduce 
a tool requiring more than one slot. 

(3) The time needed to remove or insert each tool is constant, and is 
the same for all tools. This assumption is in particular crucial for 
the correctness of the KTNS procedure (see Subsection 9.2.2) which 
determines the optimal tool loadings for a given job sequence. Many 

. of our heuristic procedures, however, can easily be adapted in the case 
where switching times are tool dependent. 

( 4) Tools cannot be changed simultaneously. This is a realistic assump
tion in many situations, e.g. for the forging or for the PCB assembly 
applications mentioned above. 

(5) The subset of tools required to carry out each job is fixed in advance. 
This assumption could be relaxed by assuming instead that, for each 
job, a list of subsets of tools is given, and that the job can be executed 
by any subset in the list; (Le., several process plans are given for each 
job; see e.g. Finke and Kusiak (1987)). Choosing the right subset 
would then add a new dimension (and quite a lot of complexity) to the 
problem. 
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(6) Tools do not break down and do not wear not. This assumption is 
justified if the tool life is long enough with respect to the planning 
horizon. Otherwise, one may want to lift the assumption "determinis
tically" , e.g. by assuming that tool k is worn out after the execution of 
Wk jobs, for a given value of Wk. Alternatively, breakdowns and wear 
may also be modelled probabilistically. This would obviously result in 
a completely new model. 

(7) The list of jobs is completely known. This assumption is realistic if 
the planning horizon is relatively short. 

This chapter deals with various aspects of the tool switching problem. Sec
tion 9.2 contains some basic results concerning the computational complexity 
of this problem; in particular, we establish that the problem is already N'P
hard for C = 2, and we present a new proof of the fact that, for each fixed job 
sequence, an optimal sequence of tool loadings can be found in polynomial 
time. In Section 9.3, we describe several heuristics for the tool switching 
problem, and the performance of these heuristics on randomly generated 
problems is compared in Section 9.4. Section 9.5 discusses, in general terms, 
the difficult problem of computing good lower bounds for the optimal value 
of the tool switching problem. The Appendix contains some graph-theoretic 
definitions. 

9.2 Basic results 

We present in this section some results concerning the computational com
plexity of the tool switching problem. We assume that the reader is familiar 
with the basic concepts of complexity theory (see e.g. Nemhauser and Wolsey 
(1988)). Let us simply recall here that, loosely speaking, a problem is N'P
hru;d if it is at least as hard as the traveling salesman problem (see the 
Appendix). 

9.2.1 NP-hardness results 

Tang and Denardo (1988a) claim that the tool switching problem is N'P
hard. They do not present a formal proof of this assertion, but rather infer 
it from the observation that the problem can be modelled, as a traveling 
salesman problem with variable edge lengths. Our immediate goal will be 
to establish the validity of two slightly stronger claims. 
Consider first the following restricted version of the tool switching problem: 
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Input : an M X N matrix A and a capacity C. 
Problem PI : is there a job sequence for A requiring exactly M setups 

(Le., no extra setups)? 

Theorem 9.1 Problem PI is NP-hard. 

Proof: 
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It is straightforward to check that PI is precisely the decision version of 
the so-called matrix permutation problem, which has been extensively in
vestigated in the VLSI design literature (see Mohring (1990) and references 
therein). Several equivalent versions of the matrix permutation problem 
have been shown to be NP-hard (see Kashiwabara and Fujisawa (1979), 
Mohring (1990)), and hence PI is NP-hard. 0 

In the description of problem PI, both A and C are regarded as problem 
data. But, from the viewpoint of our application, it may also be interesting 
to consider the situation where a specific machine, with fixed capacity, has to 
process different batches of jobs. The matrix A can then be regarded as the 
sole data of the tool switching problem. This observation leads us to define 
the following problem, where C is now considered as a fixed parameter: 

Input : an M X N matrix A. 
Problem P2 : find a job sequence for A minimizing the number of setups 

required on a machine with capacity C. 

Theorem 9.2 Problem P2 is NP-hard for any fixed C ~ 2. 

Proof: 
Let G = (V, E, d) be a graph and H = (E, 1,0) be its edge-graph (see 
the Appendix). We consider the problem of finding a minimal length T S 
path in H (problem P3 in the Appendix). We are now going to prove 
Theorem 9.2 by showing that this NP-hard problem can be formulated as 
a special case of problem P2, for any fixed C ~ 2. For simplicity, we first 
concentrate on a proof of Theorem 9.2 for C = 2. Let V = {I, 2, ... , M} 
and E = {el, e2, ... , eN}. Define an M X N matrix A, with rows associated 
to the nodes of G, columns associated to the edges of G, and such that: 

aij = 1 if edge ej contains node i, 
= 0 otherwise. 

Consider now A as an instance of the tool switching problem, with capacity 
C = 2. A job sequence for this problem corresponds to a permutation of E, 
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and hence to a T S path in the edge-graph of G. Also, it is easy to see that 
the number of tool switches between two jobs j and k, corresponding to the 
edges ej and ek of G, is: 

- equal to 1 if ej and ek share a common node, that is, if 6(ej,ek) = 1 
in H; 

- equal to 2 if ej and ek do not share a common node, that is, if 
6(ej, ek) = +00 in H. 

This discussion immediately implies that an optimal job sequence for A (with 
capacity 2) always corresponds to a minimal length TS path in H. Hence, 
we can solve P3 by solving P2, and this entails that P2 is NP-hard. To see 
that Theorem 9.2 is also valid for C > 2, it suffices to adapt the definition 
of A in the previous argument, by adding C -2 rows of 1 's to it; that is, A 
now has (M + C - 2) rows, and aij = 1 if i~ M + 1. The reasoning goes 
through with this modification. 0 

9.2.2 Finding the minimum number of setups for a fixed job 
sequence 

The tool switching problem naturally decomposes into two interdependent 
issues, namely: 

(1) sequencing: compute an (optimal) job sequence, and 
(2) tooling : for the given sequence, determine what tools should be 

loaded in the tool magazine at each moment, in order 
to minimize the total number of setups 
required. 

In th~ir paper, Tang and Denardo (1988a) proved that the sequencing sub
problem actually is the hard nut to crack, since the tooling problem can 
be solved in O(M N) operations by applying a so-called Keep Tool Needed 
Soonest (KTNS) policy. A KTNS policy prescribes that, whenever a situa
tion occurs where some tools should be removed from the magazine, so as 
to make room for tools needed for the next job, then those tools which are 
needed the soonest for a future job should be removed last (we refer to Tang 
and Denardo (1988a) or Bard (1988) for a more precise desqiption). 

Tang and Denardo's proof of the correctness of KTNS relies on ad-hoc 
interchange arguments and is rather involved (as observed by Finke and 
Roger - see Roger (1990) - the correctness of KTNS was already established 
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by Mattson, Gecsei, Slutz and Traiger (1970) in the context of storage tech
niques for computer memory, in the case where each job requires exactly one 
tool; their proof is similar to Tang and Denardo's). 

We now look at the tooling subproblem from a different angle, and show 
that the problem can be modelled as a specially structured 0-1 linear pro
gramming problem, which can be solved by a greedy algorithm due to Hoff
man, Kolen and Sakarovitch (1985) (see also Nemhauser and Wolsey (1988), 
pp. 562-573; Daskin, Jones and Lowe (1990) present another application 
of the same greedy algorithm in a flexible manufacturing context). When 
translated in the terminology of the tool switching problem, this algorithm 
precisely yields KTNS. Thus, this argument provides a new proof of correct
ness for KTNS. 

The bulk of the work in our derivation of the KTNS procedure will simply 
consist in reformulating the tooling problem in an appropriate form. With 
this goal in mind, we first introduce some new notations and terminology. 
For the remainder of this section, assume that the job sequence (7 is fixed. 
Let the M x N(O, 1)-matrix P be defined by: 

Pij = 1 if tool i is required for the j-th job in (7, 

= 0 otherwise 

(that is, P is obtained by permuting the columns of A according to the job 
sequence at hand). A tooling policy can now be described by flipping some 
entries of P from 0 to 1, until each column of P contains exactly C ones. IT 
we denote by Cj the remaining capacity of column j, that is the quantity: 

M 

Cj = C - LPij 
i=l 

then a tooling policy must flip Cj entries from 0 to 1 in the j-th column of 
P. 

Let us next define a O-block of P as a maximal subset of consecutive zeroes 
in a row of P. More formally, a O-block is a set of the form {(i,j), (i,j + 
1), ... , (i, j + k)}, for which the following conditions hold: 

(1) 1<j~j+k<N, 

(2) Pij = Pi,j+! = ... = Pi,Hk = 0, 

(3) Pi,j-l = Pi,Hk+1 = 1. 

Intuitively, a O-block is a maximal time interval before and after which tool 
i is needed, but during which it is not needed. It is easy to see that each 
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O-block of P is associated with an extra setup of tool i. Thus, flipping an 
element of P from 0 to 1 can only reduce the number of extra setups if this 
element belongs to a 0-block, and if all other elements of this 0-block are 
also flipped. In other words, only flipping whole O-blocks can help reducing 
the number of setups. 

Example 9.1 The matrix 

[
0100 1 

P= 1 1 0 0 0 
1 0 l' 1 0 

contains three O-blocks, namely {(1,3),(1,4)}, {(3,2)} and {(3,5)}. They 
correspond to an extra setup of tool 1 in period 5, and two extra setups of 
tool 3, in periods 3 and 6. Assume that the capacity is C = 2. Then, the 
number of extra setups can be minimized by flipping the first and the third 
0-blocks to 1, thus resulting in the mat.rix: 

T=[~ ~ ~ ~ ~ ~l 
101 1 1 1 

o 

From the previous discussion, it should now be clear that the tooling problem 
can be rephrased as follows: flip to 1 as many O-blocks of P as possible, 
while flipping at most Cj entries in column j (j = 1,2, ... , N). 

Denote by B the number of 0-blocks in P, and, for k = 1, 2, ... , B, 
introduce the decision variables: 

Xk = 1 if the k-th O-block is flipped to 1, 
= 0 otherwise. 

For j = 1,2, ... ,N and k = 1,2, ... ,B, let also: 

mjk = 1 if the k-th O-block "meets" column j in P, 
= 0 otherwise 

(formally, a O-block meets column j if it contains an element of the form (i,j), 
for some i; for instance, in Example 9.1, the first O-block meets columns 3 
and 4). 
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Now, the tooling problem admits the following 0-1 linear programming 
formulation: 

B 

(TP) maximize E Xk 
k=l 
B 

subject to E mjkXk $ Cj, 

k=l 
Xk E {0,1}, 

j = 1,2, .. . ,N 

Assume now that the O-blocks of P have been ordered in non-decreasing 
order of their "endpoints": that is, the O-blocks of P have been numbered 
from 1 to B in such a way that the index of the last column met by the k-th 
0-block is smaller thaD. or equal to the index of the last column met by the 
(k + 1 )-st 0-block, for k = 1, ... , B - 1. Then, the matrix ( mjk) is a so-called 

greedy matrix, i.e. it does not contain the ~atrix [~ ~ 1 as a submatrix. 

Hoffman et al. (1985) considered the following, more general problem on an 
N x B greedy matrix: 

B 

(GP) maximize E bkXk 

k=l 
B 

subject to E mjkXk $ Cj, j = 1,2, .. . N, 
k=l 
0$ Xk $ dk,Xk integer, k = 1,2, ... ,B, 

where bk,dk (k = 1,2, ... ,B) and Cj (j = 1,2, ... ,N) are integers with 
bl ;?: b2 ;?: ••• ;?: bB. They proved that, when the matrix (mjk) is greedy, 
problem (GP) can be solved by a greedy algorithm, in which each Xk (k = 
1,2, ... , B) is successively taken as large as possible while respecting the fea
sibility constraints. Reformulating this algorithm for (TP), we see that we 
should successively fiip O-blocks to 1, in order of nondecreasing endpoints, 
as long as the remaining capacity of all columns met by the O-block is at 
least one. We leave it to the reader to check that this procedure is precisely 
equivalent to a KTNS policy. 

Remark. In a more general situation where the setup times are not identi
cal for all tools, the tooling subproblem can still be formulated as a problem 
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of the form (G P), where bk is now the time required to set up the tool associ
ated with the k-th O-block. Since the condition b1 ~ b2 ~ ••• ~ bB does not 
generally hold for these setup times, the greedy algorithm of Hoffman et al. 
(1985) and KTNS are no longer valid. However, the matrix (mjk), being an 
interval matrix, is totally unimodular (see Subsection 9.3.4 and Nemhauser 
and Wolsey (1988) for definitions). It follows that the tooling subproblem 
can still be solved in polynomial time in that case, by simply solving the 
linear programming relaxation of the formulation (G P). 

9.3 Heuristics 

The tool switching problem being NP-hard, and hence probably difficult 
to solve to optimality, we concentrate in the sequel on heuristic techniques 
for its solution. We propose hereunder six basic approaches, falling into 
two main categories (we adopt the terminology used by Golden and Stewart 
(1985) for the traveling salesman problem) : 

- construction strategies, which exploit the special structure of the tool 
switching problem in order to construct a single (hopefully good) job 
sequence (Subsections 9.3.1 to 9.3.4 below); 

- improvement strategies, which iteratively improve a starting job se
quence (Subsections 9.3.5 and 9.3.6 below). 

Composite strategies will be obtained by combining construction and im
provement procedures. A computational comparison of the resulting proce
dures will be presented in Section 9.4. 
As explained in Section 9.1, the data of our problem consist of an MxN tool
job matrix A and a capacity C. We focus on the solution of the sequencing 
subproblem (see Subsection 9.2.2), since we already know that the tooling 
subproblem is easy to solve. Whenever we speak of the cost of a (partial) 
job sequence, we mean the minimal number of tool switches required by the 
sequence, as computed using KTNS. 

9.3.1 Traveling salesman heuristics 

These heuristics are based on an idea suggested by Tang and Denardo 
(1988a). They consider a graph G = (V,E,lb) (see the Appendix for def
initions), where V is the set of jobs, E is the set of all pairs of jobs, and 
the length lb(i,j) of edge {i,j} is an underestimate of the number of tool 
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switches needed between jobs i and j when these jobs are consecutively 
processed in a sequence. More precisely: 

Ib(i,j) = max(ITi U Tjl- C,O), 

where Tk is the set of tools required by job k (k = 1,2, .. . ,N). Notice that, 
if each job requires exactly C tools (Le. ITkl = C for all k), then Ib(i,j) is 
equal to the number of tool switches required between jobs i and j in any 
schedule. 

Each traveling salesman (TS) path of G corresponds to a job sequence for 
the tool switching problem. So, as suggested by Tang and Denardo (1988a), 
computing a short TS path in G constitutes a reasonable heuristic for the 
generation of a good sequence. As a matter of fact, when all jobs use full 
capacity, then the tool switching problem is precisely equivalent to the TS 
problem on G. 

In our computational experiments, we h~ve considered the following pro
cedures for constructing a short TS path in G: 

(1) Shortest Edge heuristic: this is the heuristic used by Tang and Denardo 
(1988a), and called "greedy feasible" in Nemhauser and Wolsey (1988); 
complexity: O( N 2 10g N); 

(2) Nearest Neighbor heuristic with all possible starting nodes: see Golden 
and Stewart (1985), Johnson and Papadimitriou (1985); complexity: 
O(N3); 

(3) Farthest Insertion heuristic with all possible starting nodes: see Golden 
and Stewart (1985), Johnson and Papadimitriou (1985); complexity: 
O(N4); 

( 4) B & B algorithm: this is a state-of-the-art branch and bound code, 
which solves TS problems to optimality: see Volgenant and Jonker 
(1982); complexity: exponential in the worst-case. 

Procedures (1), (2) and (3) are well-known heuristics for the traveling sales
man problem. In addition to the complexity mentioned for each procedure, 
an overhead of OeM N 2 ) operations has to be incurred for the computation 
ofthe edge lengths Ib(i,j). 
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9.3.2 Block minimization heuristics 

We describe now another way of associating a traveling salesman instance 
to any given instance of the tool switching problem. We first introduce a 
directed graph D = (V*, U, ub). Here, V* is the set of all jobs, plus an 
additional node denoted by o. Each ordered pair of nodes is an arc in U. 
The length ub(i,j) of arc (i,j) is given by: 

where Tk is the set of tools required by job k (k = 1,2, ... ,N), and To 
is the empty set. In other words, ub( i, j) is the number of tools used by 
job i but not by job j; hence, ub(i,j) is an upper-bound on the number 
of tool switches between jobs i and j, for any sequence in which i and j 
must be consecutively processed. H every job requires exactly C tools, then 
ub(i,j) = ub(j, i) = lb(i,j) is equal to the number of switches between i and 
j. But in general, ub(i,j) differs from ub(j,i). 

Each TS path of D finishing at node 0 defines a sequence of jobs, and 
the length of the path is an upper-bound on the total number of switches 
entailed by the sequence. For reasons explained below, we refer to heuristics 
which attempt to construct a short TS path in D as block minimization 
heuristics. We have implemented two such heuristics: 

(1) NN Block Minimization, based on a nearest neighbor heuristic with all 
, possible starting nodes; complexity: O( N3); 

(2) FI Block Minimization, based on a farthest insertion heuristic with all 
possible starting nodes; complexity: O(N4). 

Let us mention another interesting interpretation of the block minimization 
approach. As in Subsection 9.2.2, consider the matrix P obtained after 
permuting the columns of A according to a job sequence u. We'define a 
l-block of P as a set of entries, of the form {(i,j), (i,j + 1), ... , (i,j + k)}, 
for which the following conditions hold: 

(1) l$,j$,j+k$,N, 

(2) Pij = Pi,j+! = ... = Pi,j+k = 1, 

(3) either j = 1 or Pi,j-l = 0, 

(4) either j + k = N or Pi,j+k+! = 0 
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(this definition does not exactly mimic the definition of O-blocks, but the 
difference is irrelevant here). Notice that, were it not for the possibility to 
carry out KTNS on P, then each 1-block of P would induce a tool setup in 
the job sequence (1. Thus, the number of 1-blocks of P is an overestimate of 
the number of setups required by (1. 

We leave it to the reader to check that the number of 1-blocks in P is 
also equal to the length of the TS path associated with (1 in D (and finishing 
at node 0). So, finding a shortest TS path in D is equivalent to determining 
a permutation of the columns of A which minimizes the number of 1-blocks 
in the permuted matrix. This observation is essentially due to Kou (1977). 
Kou (1977) also proved that finding a permutation which minimizes the 
number of 1-blocks is NP-hard (our proof of Theorem 9.2 establishes the 
same result). This justifies the use of heuristics in our block minimization 
approach. 

9.3.3 Greedy heuristics 

One of the obvious drawbacks of the heuristics described in Subsections 9.3.1 
and 9.3.2 is that they do not take a whole job sequence into account when 
estimating the number of tool switches required between pairs of jobs. For 
instance, Ib(i,j) is in general only a lower-bound on the actual number of 
switches between jobs i and j, and this lower-bound can sometimes be a 
quite poor estimate of the actual value. An extreme case would arise when 
no job requires more than C /2 tools; then, lb( i, j) = 0 for each pair (i, j), 
and any traveling salesman heuristic based on these edge-lengths picks a 
random job sequence! Similarly, ub(i,j) can also be a rough upper-bound 
on the number of switches required. In order to alleviate this difficulty, we 
propose now the following (Simple) Greedy heuristic: 

Step 1 start with the partial job sequence (1 = (1); let Q = {2,3, .. . ,N}. 

Step 2 for each job j in Q, let c(j) be the cost of the partial sequence ((1, 

j) (i.e., the number of tool switches entailed by this partial 
sequence, disregarding the remaining jobs). 

Step 3 let i be a job in Q for which c( i) = minj€Qc(j); let (1 := ((1, i) and 
Q := Q\{i}. 

Step 4 if Q is not empty, then repeat Step 2; else, stop with the complete 
sequence (1. 
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Greedy runs in time O(MN3), since it requires O(N2) applications of the 
KTNS procedure (in Step 2). Its empirical performance can be slightly 
improved by taking advantage of the fact that all the partial sequences con
sidered in Step 2 share the same initial segment. 

Of course, there is no mandatory reason to select job 1 first in Step 1 
of Greedy, rather than any other job. This observation suggests to consider 
the following, more elaborate Multiple-Start Greedy heuristic: run N times 
Greedy, once for each initial sequence (T. = (j) (j = 1,2, ... , N), and retain 
the best complete sequence found. This heuristic clearly dominates Greedy, 
in terms of the quality of the job sequence that it produces. Its worst-case 
complexity is O(MN4). 

As a final note on this approach, it may be interesting to observe that, 
if each job requires exactly C tools, then Multiple-S~art Greedy is identical 
to the TS Nearest Neighbor heuristic (Subsection 9.3.1) or to the NN block 
minimization heuristic (Subsection 9.3.2). 

9.3.4 Interval heuristic 

In order to motivate our next heuristic, let us first consider a special sit
uation: assume that the matrix P arising by permuting the columns of A 
according to some sequence (T has precisely one 1-block in each row. In other 
words, the ones in each row of P occur consecutively. When this is the case 
we say that A is an interval matrix (or that A has the consecutive ones 
property; see e.g. Fulkerson and Gross (1965), Booth and Lueker (1976), 
Nemhauser and Wolsey (1988». Then, the job sequence (T requires only one 
setup per tool, and is obviously optimal. 

Thus, every M X N interval matrix admits an optimal sequence with 
M setups. Moreover, given an arbitrary matrix A, one can decide in time 
OeM N) whether A is an interval matrix, and, in the affirmative, one can 
find within the same time bound a sequence entailing M setups for A (Booth 
and Lueker (1976» (notice that this does not contradict Theorem 9.1: by 
applying KTNS, a sequence with M setups can sometimes be found for non
interval matrices). On the other hand, it is by no means clear that any of 
the heuristics described in Subsections 9.3.1, 9.3.2 or 9.3.3 would find an 
optimal job sequence for an interval matrix. 

These observations suggest the implementation of the following Interval 
heuristic. The heuristic simultaneously builds a "large" interval submatrix of 
A, and computes an optimal job sequence for the submatrix. This sequence 
is the solution returned by the heuristic. More precisely: 



Section 9.3 207 

Step 1 initialize I = {}, i = 1. 
Step 2 determine whether the submatrix of A consisting of the rows with 

index in I U {i} is an interval matrix; if so, then let I := I U {i} 
and let (F be an optimal job sequence for the submatrix; 
else, continue. 

Step 3 if i < M, then let i := i + 1 and go to Step 2; else, continue. 

Step 4 return the last job sequence found; stop. 

The Interval heuristic has the attractive property that it produces an optimal 
job sequence for every interval matrix. The complexity of the heuristic 
is O(MN) if the algorithm by Booth and Lueker (1976) is used. In our 
implementation, we have used a slower, but simpler recognition algorithm 
for interval matrices, due to Fulkerson and Gross (1965). 

In the following subsections, we concentrate on improvement strategies. 
The input for each procedure is some initial job sequence (F, that we subse
quently attempt to improve in an iterative way. 

9.3.5 2-0pt strategies 

This class of strategies is based on an idea that has been widely used for other 
combinatorial optimization problems: given a sequence (F, try to produce a 
better sequence by exchanging two jobs in (F (if i is the k-th job and j is the 
p-th job in (F, then exchanging i and j means putting i in p-th position and 
j in k-th position). We have considered two versions of this basic approach. 
The first one, called Global 2-0pt, can be described as follows: 

Step 1 find two jobs i and j whose exchange results in an improved 
sequence; if there are no such jobs, then return (F and stop; 
else, continue. 

Step 2 exchange i and j; call (F the resulting sequence; 
repeat Step 1. 

Global2-0pt has been proposed by Bard (1988) for the tool switching prob
lem. Notice that each execution of Step 1 requires O(N2) applications of 
KTNS, i.e. O(MN3) operations. But the number of potential executions of 
this step does not appear to be trivially bounded by a polynomial in Nand 
M (contrary to what is claimed by Bard (1988». In order to reduce the 
computational effort by iteration of Global 2-0pt, the following Restricted 
2-0pt procedure can also be considered: 
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Step 1 find two consecutive jobs in u, say the k-th and (k + l)-st ones, 
whose exchange results in an improved sequence; 
if there are no such jobs, then return u and stop. 

Step 2 exchange the jobs found in Step 1; call u the resulting sequence; 
repeat Step 1. 

The complexity of Step 1 in Restricted 2-0pt is OeM N 2 ). This exchange 
strategy has also been proposed by Finke and Roger (see Roger (1990)). 

9.3.6 Load-and-Optimize strategy 

Consider again a job sequence u and the matrix P obtained by permuting 
the columns of A according to u. Applying KTNS to P results in a new 
matrix T, each column of which contains exactly C ones (the j-th column of 
T describes the loading of the tool magazine while the j-th job in u is being 
processed). Suppose now that we look at T as defining a new instance of 
the tool switching problem (with capacity C). IT we can find for T a better 
sequence than u, then this sequence will obviously be a better sequence than 
u for the original matrix A as well. On the other hand, the problem instance 
(T, C) is a little bit easier to handle than the instance (A, C). Indeed, since 
each column of T contains C ones, the tool switching problem (T, C) can 
be reformulated as a TS problem, as explained in Subsections 9.3.1, 9.3.2, 
9.3.3. These observations motivate our Load-and-Optimize strategy: 

Step 1 permute the columns of A according to u and apply KTNS; 
call T the resulting matrix. 

Step 2 compute an optimal sequence u' for the tool switching instance 
(T,C). 

Step 3 if u' is a better sequence than u for A, then replace u by u' and 
repeat Step 1; else return u and stop. 

From a practical viewpoint, we have found it easier to slightly alter this 
basic strategy, in the following way. In Step 2, rather than computing an 
optimal sequence for T (which is computationally demanding), we simply 
use the farthest insertion heuristic to produce a good sequence u' (as in 
Subsection 9.3.1). On the other harid, in Step 3, we accept the new sequence 
u' even if it entails the same number of setups as u. We only stop when 10 
iterations of the procedure have been executed without producing a strictly 
improved sequence. In the sequel, we also refer to this variant as "Load-and
Optimize" . 
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9.4 Computational experiments 

9.4.1 Generation of problem instances 

We tested our heuristics on 160 random instances of the tool switching prob
lem. Of course, tool-job matrices occurring in practice may have character
istics not present in the ones we generated. For instance, as pointed out 
by an anonymous referee, realistic m~trices are likely to display inter-row 
and inter-column' correlations, as well as "tool dusters". However, in the 
absence of real-world data or even of detailed statistical information about 
these, we decided to follow a procedure similar to the one proposed by Tang 
and Denardo (1988a) in generating our. test problems. 

Each random instance falls into one of 16 instance types, characterized 
by the size. (M, N) of the tool-job matrix and by the value C of the capacity. 
Accordingly, we denote the type of an instance by a triple (M, N, C). There 
are 10 instances of each type. The tool-job matrices are M x N matrices, 
where (M,N) is either (10,10), (20,15), (40,30) or (60,40). For each size 
(M, N), we also define a pair (Min, Max) of parameters with the following 
interpretation: 

- Min = lower-bound on the number of tools per job, 

- Max = upper-bound on the number of tools per job. 

The specific values of these parameters are displayed in Table 9.1. 

Problem size Min Max 

(10,10) 2 4 
(20,15) 2 6 
(40,30) 5 15 
(60,40) 7 20 

Table 9.1 

For each problem size (M, N), 10 random matrices A were generated. For 
each j = 1,2, ... , N, the j-th column of A was generated as follows. First, 
an integer tj was drawn from the uniform distribution over [min, :max]: this 
number denotes the number of tools needed for job j, i.e. the number of 1 's 
in the j-th column of A. Next, a set Tj of tj distinct integers were drawn 
from the uniform distribution over [1, M]: these integers denote the tools 
required by job j, i.e. akj = 1 if and only if k is in Tj. Finally, we checked 
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whether Tj ~ Ti or Ti ~ Tj held for any i < j. If any of these inclusions 
was found to hold, then the previous choice of Tj was cancelled, and a new 
set Tj was generated (Tang and Denardo (1988a) and Bard (1988) have 
observed that any column of A contained in another column can be deleted 
without affecting the optimal solution of the problem; thus, we want to make 
sure that our problem instances actually involve N columns, and cannot be 
reduced by this simple trick). Notice that this generation procedure does 
not a priori prevent the occurrence of null rows in the matrix. In practice, 
only two of the 40 matrices that we generated contained null rows (these 
were two (20,15) matrices, containing respectively one and three null rows). 

A problem instance of type (M, N, C) is now obtained by combining an 
M x N tool-job matrix A with one of the four capacities Ct, C2 , C3 and C4 

displayed in Table 9.2. 

Problem size C1 C2 C3 C4 

(10,10) 4 5 6 7 
(20,15) 6 8 10 12 
(40,30) 15 17 20 25 
(60,40) 20 22 25 30 

Table 9.2 

We will see that the performance of some heuristics strongly depends on the 
value of the ratio max / C. We call sparse those problem instances for which 
max / C is small, and dense those for which the ratio is close to 1. NotiCe, in 
particular, that all instances of type (M,N,CI) have max/C1 = 1. Varying 
the capacity as indicated in Table 9.2 will allow us to examine the behavior 
of our heuristics under different sparsity conditions. Let us mention here 
that, according to the empirical observation of many real-world systems 
described by Forster and Rirt (1989), sparse instances are probably more 
"realistic" than dense ones. But of course, this conclusion is very much 
system-dependent. 

9.4.2 Computational results 

All heuristics described in Section 9.3 have been implemented in Turbo Pas
cal and tested on the problem instances described above. The experiments 
were run on an AT personal computer equipped with an 80286 micropro
cessor and an additional 80287 coprocessor. Since our primary goal was 
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to compare the quality of the solutions produced by the heuristics, no sys
tematic attempts were made to optimize the running time of the codes. 
Accordingly, we will not report here on precise computing times, but simply 
give some rough indication of the relation between the times required by the 
various methods. 

The performance of heuristic H on problem instance I is measured in 
terms of "percentage above the best solution found" , namely, by the quan
tity: 

6H(I) = (H(I) - Best (I)) .100 
Best (I) , 

where H(I) is the number of tool setups required by the job sequence pro
duced by heuristic H, and Best (I) is the number of setups required by the 
best sequence found by any of our heuristics. 

For information, Table 9.3 indicates the evolution of Best (I) as a func
tion of the problem type (average of Best (1") over all ten instances of each 
type). All subsequent tables (Tables 9.4, 9.5, 9.6 report averages and (in 
brackets) standard deviations of 6H(I) over all instances I of a given type. 

Tool magazine capacity 

Problem size Ct C2 C3 C4 

(10,10) 13.2 11.2 10.3 10.1 
(20,15) 26.5 21.6 20.0 19.6 
(40,30) 113.6 95.9 76.8 56.8 
(60,40) 211.6 189.7 160.5 127.4 

Table 9.3 



212 Chapter 9 

Heuristic (10,10, (20,15, ( 40,30, (60,40, 
C =4) C = 6) C = 15) C = 20) 

Shortest edge 12.4 (6.8) 23.9 (9.8) 20.3 (3.1) 18.8 (3.4) 
Farthest Insertion 12.1 (9.8) 15.5 (8.6) 9.6 (5.3) 6.9 (2.7) 
Nearest Neighbor 13.7 (7.8) 19.8 (7.7) 21.0 (6.0) 18.9 (3.5) 
Branch-and-Bound 12.6 (4.6) 16.2 (5.8) 12.4 (4.3) 10.9 (2.9) 

Table 9.4 

Table 9.4 compares the behavior of the four traveling salesman heuristics 
described in Subsection 9.3.1. We will see later that TS heuristics perform 
best on dense instances, and tend to behave very badly on sparse instances. 
Therefore, we limit ourselves here to a comparison of these heuristics on the 
densest instances, that is, those instances where C = Ct = max. 

From Table 9.4, it appears that on average, and mostly for large in
stances, Farthest Insertion yields better solutions than the other TS heuris
tics. Farthest Insertion is also a very fast heuristic, which produces solutions 
in a matter of seconds (about 30 seconds for the largest instances). The 
Shortest Edge and Nearest Neighbor heuristics are even faster, but Farthest 
Insertion presents in our view the best quality vs. efficiency trade-off. Thus, 
we will select Farthest Insertion as our "winner" among TS heuristics, and 
no longer report on the other TS heuristics in the sequel. 

A similar comparison between the two block minimization heuristics pre
sented in Subsection 9.3.2 would lead to similar conclusions. Here again, FI 
is slightly better and slightly slower than NN. In the remainder of this sec
tion, we only report on the performance of FI, and no longer of NN. 

Tables 9.5 displays the performance of "constructive" and "improve
ment" heuristics over our complete sample of problem instances. The results 
(averages and standard deviations) for each heuristic are given in different 
columns. 

The results presented under the labels "2-0pt" or "Load-and-Optimize" 
have been obtained by first picking a random job sequence, and then apply
ing the corresponding improvement strategies to it. The columns labelled 
"Random" provide, for the sake of comparison, the number of tool setups 
entailed by the initial random job sequence. 
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Farthest FI Block Simple Multiple-Start 
(M,N,C) Insertion Minimization Greedy Greedy 
(10,10,4) 12.1 (9.8) 14.3 (7.7) 12.3 (6.3) 4.6 (3.8) 
(10,10,5) 19.0 (7.8) 13.6 (7.6) 8.1 (6.0) 3.7 (4.6) 
(10,10,6) 17.8 (10.8) 9.7 (6.4) 5.7 (4.7) 2.9 (4.4) 
(10,10,7) 11.7 (10.3) 3.9 (4.8) 1.0 (3.0) 0.0 (0.0) 
(20,15,6) 15.5 (8.6) 12.0 (4.2) 13.7 (7.0) 4.6 (3.5) 
(20,15,8) 37.3(10.8) 13.9 (8.4) 11.0 (7.3) 4.6 (3.0) 
(20,15,10) 30.5 (5.8) 8.3 (6.2) 5.6 (4.3) 1.5 (2.3) 
(20,15,12) 15.3 (5.5) 2.1 (3.5) 1.0 (2.1) 0.0 (0.0) 
( 40,30,15) 9.4 (5.3) 8.8 (4.4) 11.4 (4.8) 6.2 (3.1) 
(40,30,17) 16.3 (7.5) 9.4 (3.8) 9.8 (3.5) 5.5 (2.2) 
(40,30,20) 33.8 (9.1) 12.1 (3.6) 9.8 (4.2) 3.2 (2.0) 
( 40,30,25) 39.4 (6.6) 15.0 (2.7) 8.3 (4.9) 2.6 (2.3) 
(60,40,20) 6.9 (2.7) 9.7 (2.4) 10.2 (2.6) 5.8 (1.5) 
(60,40,22) 9.9 (2.7) 8.7 (2.6) 7.9 (3.1) 3.3 (1.7) 
(60,40,25) 21.8 (5.7) 10.5 (3.1) 8.2 (2.8) 2.8 (2.0) 
(60,40,30) 36.7 (4.0) 13.1 (3.7) 6.5 (2.4) 1.7 (1.4) 

Interval Restricted Global Load-and- Random 
(M,N,C) 2-opt 2-opt Optimize 
(10,10,4) 22.6 (12.2) 26.0 (7.7) 8.7 (4.7) 5.8 (5.3) 41.2 (18.9) 
(10,10,5) 14.1 (14.1) 24.3 (10.1) 7.4 (7.1) 10.1 (7.2) 33.8 16.2) 
(10,10,6) 9.7 (11.8) 18.3 (7.7) 3.0 (4.6) 6.7 (4.4) 26.3 (9.1) 
(10,10,7) 3.0 (6.4) 9.8 (7.5) 0.0 (0.0) 3.0 (6.4) 13.8 (7.9) 
(20,15,6) 25.7 (9.7) 33.6 (7.2) 10.0 (4.3) 12.3 (6.8) 45.9 (8.8) 
(20,15,8) 20.4 (9.2) 35.7 (10.8) 9.7 (4.1) 23.8 (8.5) 42.2 (11.8) 
(20,15,10) 10.4 (8.2) 24.3 (9.2) 6.4 (7.3) 25.6 (11.7) 30.112.3) 
(20,15,12) 3.5 (5.0) 13.6 (8.3) 1.0 (2.0) 16.6 (9.6) 18.1 (11.3) 
( 40,30,15) 30.5 (4.3) 30.3 (5.0) 6.0 (4.0) 16.6 (5.3) 42.9 (6.1) 
( 40,30,17) 31.2 (5.4) 31.0 (4.6) 4.5 (3.3) 27.5 (4.3) 44.6 (6.4) 
( 40,30,20) 30.4 (6.0) 33.0 (6.6) 6.0 (2.9) 35.1 (6.4) 45.5 (8.9) 
( 40,30,25) 27.8 (6.6) 34.5 (7.4) 6.1 (3.7) 37.8 (7.0) 40.5 (7.1) 
(60,40,20) 30.6 (2.7) 25.8 (3.8) 4.8 (2.4) 20.0 (3.8) 37.1 (3.6) 
(60,40,22) 29.3 (4.1) 25.4 (2.9) 3.7 (2.6) 25.4 (4.1) ,36.5 (3.5) 
(60,40,25) 30.2 (3.6) 29.7 (3.0) 2.1 (1.9) 35.5 (4.3) 38.0 (3.6) 
(60,40,30) 28.8 (3.4) 30.1 (3.3) 4.5 (2.7) 36.7 (4.4) 37.6 (3.8) 

Table 9.5 Average (and standard deviation) of oH(I) 
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Let us now try to sketch some of the conclusions that emerge from this 
table. Consider first the case of dense instances, that is, the instances of 
type (10,10,4),(20,15,6),(40,30,15) and (60,40,20). As the size of these 
instances increases, the ranking of the solutions delivered by the various 
heuristics seems to become more or less stable. Namely, Multiple-Start 
Greedy and Global2-0pt produce (on the average) the best results. Next 
comes a group made up of Farthest Insertion, Simple Greedy and FI Block 
Minimization, which usually yield solutions of slightly lower quality. Finally, 
the worst solutions are produced by Load-and-Optimize, Restricted 2-0pt 
and Interval (and, as expected, the random procedure). 

We get a somewhat different ranking of the heuristics when we look at 
sparse instances. Consider e.g. the instances of type (10,10,7), (20,15,12), 
(40,30,25),(60,40,30). Multiple-Start Greedy, Global2-0pt, Simple Greedy 
and FI Block Minimization remain, in that order , the best heuristics. But 
Farthest Insertion performs now almost as badly as the random procedure! 
As a matter of fact, for larger instances, it appears that the performance 
of Farthest Insertion deteriorates very systematically as sparsity increases. 
This behavior is matched by all other TS heuristics (Shortest Edge, Near
est Neighbor, and B& B). It can be explained by observing that, for sparse 
instances, the bounds Ib(i,j) tend to be poor estimates of the number of 
switches required between jobs i and j (see Subsections 9.3.1 and 9.3.3). 

Our conclusion at this point would be that, if we are only concerned with 
the quality of the solution produced by each heuristic, then Multiple-Start 
Greedy and Global 2-0pt come out the winners, while Simple Greedy and 
FI Block Minimization are good contenders. For dense problems, Farthest 
Insertion also is a very good technique. 

This first picture becomes more nuanced when we also take comput
ing times into account. Indeed, the various heuristics run at very different 
speeds. For instance, solving an instance of type (10,10,4) takes about 0.30 
seconds by Farthest Insertion, FI Block Minimization or by Simple Greedy, 
2 seconds by Global 2-opt and 3 seconds by Multiple-Start Greedy. More 
strikingly, the instances oftype (60,40,20) require about 30 seconds by Far
thest Insertion or by FI Block Minimization, 1.5 minutes by Simple Greedy, 
30 minutes by Global 2-0pt, and 1 hour by Multiple-Start Greedy (these 
times are rather stable, for a given method, over all instan<;es of the same 
type). Even though some of these procedures could certainly be accelerated 
by implementing them more carefully, it is probably safe to say that the first 
three heuristics are fast, while the latter two are computationally more de
manding. Therefore, for those applications where a solution of high quality 
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has to be found quickly, FI Block Minimization and Simple Greedy seem to 
be perfectly adequate procedures (as well as Farthest Insertion, for dense 
instances). On the other hand, when computing time does not matter too 
much, and the thrust is instead on the quality of the solution, Multiple Start 
Greedy and Global 2-0pt could be considered. 

Table 9.6 contains the results of our experiments with composite heuris
tics. The idea is here to quickly compute a good job sequence using one of the 
constructive heuristics, and to subsequently improve it by relying on some 
improvement strategy. In view of our previous experiments, we consider five 
ways to produce an initial solution (namely, by Farthest Insertion, FI Block 
Minimization, Simple Greedy, Interval and by a random procedure), and we 
choose Global 2-0pt as improvement strategy. 

Farthest FI Block Simple Interval Global 
(M,N,C) Insertion Minimization Greedy 2-opt 
(10,10,4) 5.0 (5.5) 8.7 (6.9) 5.4(3.6) 6.9 (4.5) 8.7 (4.7) 
(10,10,5) 8.3 (5.3) 7.3 (7.1) 5.3 (5.5) 3.6 (4.4) 7.4 (7.1) 
(10,10,6) 4.9 (4.9) 2.9(4.4) 1.9 (3.8) 2.0 (4.0) 3.0 (4.6) 
(10,10,7) 2.0 (4.0) 1.0 (3.0) 0.0 (0.0) 1.0 (3.0) 0.0 (0.0) 
(20,15,6) 6.3 (5.1) 6.4 (3.8) 6.6 (3.8) 4.7 (2.9) 10.0 (4.3) 
(20,15,8) 12.3 (6.4) 6.2 (4.9) 7.1 (3.4) 8.9 (5.5) 9.7 (4.1) 
(20,15,10) 5.0 (5.5) 3.6 (4.0) 3.9 (3.0) 3.9 (5.2) 6.4 (7.3) 
(20,15,12) 1.5 (3.2) 0.0 (0.0) 0.5 (1.5) 1.0 (3.0) 1.0 (2.0) 
(40,30,15) 2.5 (3.1) 2.8 (2.0) 5.3 (4.3) 5.3 (3.1) 6.0 (4.0) 
(40,30,17) 3.1 (1.3) 3.0 (2.5) 5.0 (2.4) 6.5 (2.6) 4.5 (3.3) 
(40,30,20) 6.6 (4.1) 3.4 (2.1) 5.3 (2.7) 6.6 (2.9) 6.0 (2.9) 
(40,30,25) 7.7 (3.0) 3.9 (2.2) 4.6 (3.4) 9.1 (5.1) 6.1 (3.7) 
(60,40,20) 1.5 (1.6) 2.2 (1.8) 5.2 (1.5) 5.0 (1.5) 4.8 (2.4) 
(60,40,22) 2.0 (2.4) 2.6 (2.1) 2.5 (2.3) 2.7 (2.0) 3.7 (2.6) 
(60,40,25) 3.7 (1.7) 2.7 (2.0) 2.3 (2.5) 4.1 (3.4) 2.1 (1.9) 
(60,40,30) 3.2 (2.7) 1.6 (2.0) 2.4 (2.0) 3.7 (1.5) 4.5 (2.7) 

Table 9.6 Average (and standard deviation) of bH(I) for composite 
heuristics 

We see from Table 9.6 that, for dense instances, Farthest Insertion usually 
provides a very good initial solution, while FI Block Minimization always 
performs among the best for sparser instances. But in fact, surprisingly 
enough, all initialization procedures for Global 2-0pt (including the random 
one) come extremely close to each other, in terms of the quality of the 
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solution produced. Also, their running times do not differ significantly. 

9.5 Lower bounds 

In order to judge of the quality of the heuristics described above, it would 
have been desirable to know tight and easily computed lower bounds on the 
cost of an optimal job sequence. The knowledge of such lower bounds would 
also be a prerequisite for the development of an exact optimization procedure 
(e.g. ofthe branch-and-bound type) for the tool switching problem. At this 
moment, unfortunately, we do not have very good lower-bounding procedures 
for our problem. We now briefly discuss some of the directions which may be 
worth exploring in this regard. In this discussion, we denote by cost ( A, C) 
the total number of setups required by an optimal sequence for the problem 
instance (A, C). 

9.S.1 Traveling salesman paths 

Since the quantity lb( i, j) introduced in Subsection 9.3.1 is a lower bound on 
the number of tool switches incurred between job i and job j in any sequence, 
the length of a shortest TS path in the graph G = (V, E, Ib) certainly is a 
lower bound for the total number of switches in the optimal sequence (see 
Subsection 9.3.1). In other words, denoting by L( A, C) the length of such 
an optimal path, we see that L( A, C) + C is a lower bound on cost ( A, C) 
(Tang and Denardo (1988». Our computational experiments indicate that 
this bound is generally extremely weak. 

The lower bound L( A, C) + C can sometimes be improved by relying on 
the following observations. It is obvious that, if (A', C) is a new problem 
instance obtained by deleting some jobs from A (i.e., the columns of A' 
form a subset of the columns of A), then the number of setups required for 
(A', C) is never larger than the number of setups required for (A, C), i.e. 
cost ( A', C) ~ cost ( A, C). Thus, in particular, L( A', C) + C is a lower bound 
on cost(A,C). But it may happen that L(A,C) < L(A',C), in which case 
L( A', C) + C is a sharper bound than L( A, C) + C. 

Example 9.2 Consider the instance (A, C) described in Tang and Denardo 
(1988a). Mter some reductions, the instance involves 6 jobs; and the matrix 
lb(i,j) is given by: 
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2 3 2 2 1 
2 3 1 0 1 

lb = 2 3 3 2 2 
2 1 3 2 2 
2 0 2 2 2 
1 1 2 2 2 

The path (3, 6, 1, 4, 2, 5) is a shortest TS path with respect to lb. Its 
length is L( A, C) = 6. On the other hand, deleting the second job from this 
instance results in an instance (A', C) for which the shortest Hamiltonian 
path (3, 6, 1, 4, 5) has length L(A', C) = 7. Since the sequence (3, 6, 1, 
2, 4, 5) requires precisely 7 switches (see Tang and Denardo (1988a)), we 
conclude that this sequence is optimal for the instance (A, C). 0 

An interesting question is how the partial instance (A', C) should be 
(heuristically) picked in order to raise as much as possible the lower bound 
L(A', C) + C. This question has not been investigated yet. 

9.5.2 Structures implying extra setups 

Another approach for obtaining lower bounds on cost( A, C) is to identify 
subsets of tools for which extra setups are needed in any sequence. This can 
for instance be done as follows. Let K be a subset of rows (viz. tools), and 
J a subset of columns (viz. jobs) of A. Say that a job j E J is heavy (with 
respect to J and K) if, for every partition of J into J1 U {j} U h (J1 and h 
nonempty), 

\{k E K : akj = 1}\ + \{k E K : akj = 0 and akr = aka = 1 

for some r E J1, s E J2 }\ > C. (9.1) 

The idea behind this definition is easy to grasp: the left-hand side of (9.1) 
represents the number of tools required to process job j (akj = 1), plus the 
number of tools which are not required by j (akj = 0), but which are used 
before and after j in a sequence of the form (h, j, J2) (akr = aka = 1). Now, 
we have: 

Theorem 9.3 If J contains three heavy jobs with respect to J and K, then, 
in any sequence, at least one tool of K incurs an extra setup. 

Proof: 
Consider any sequence. We can always find a partition J into h U {j} U h 
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such that j is heavy, J1 and J2 are nonempty, all the jobs in J1 occur before 
j in the sequence, and all the jobs in J2 occur after j. It follows directly 
from (1) that, among all the tools of K which are needed both in J1 and in 
J2, some will not be present in the magazine when job j is processed (since 
this would exceed the magazine capacity). Hence, an extra setup will be 
necessary for these tools. 0 

The statement of Theorem 9.3 is probably too general to be of direct 
interest. But it can nevertheless be used to identify some substructures 
in the tool-job matrix A which imply extra setups in any sequence. Two 
illustrations of such structures are now given. 

1) Assume there exist three jobs (say, without loss of generality, j = 
1,2,3) and a subset K of tools such that: 

(i) each tool in K is used by e1Cactly two of the jobs 1,2,3; 

, (li) each of the jobs 1, 2, 3 needs (strictly) more than C - K tools 
among those not in K. 

Under these conditions, one verifies that the jobs 1,2,3 are heavy with 
respect to K; hence, the conclusion of Theorem 9.3 applies. 

2) Suppose that J and K are subsets of jobs and tools respectively, such 
that: 

(i) IJI = IKI ~ 3; 

(li) the submatrix of A with column-set J and row-set K is the adja-
cency matrix of a cycle (see Nemhauser and Wolsey (1988»; 

(iii) at least three jobs in J require C tools. 

Then, the three tools mentioned under (iii) are heavy, and Theorem 
9.3 applies again. 

Consider now p subsets of tools KI,K2, ••• ,Kp for which we know (e.g., 
using Theorem 9.3) that at least one tool in Ki incurs an extra setup in any 
sequence (i = 1,2, .. . ,p). Let K = UiKi. Then, a lower bOllnd on the total 
number of extra setups is provided by the optimal value of the following 
set-covering problem: 
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z= minimize L: tk (9.2) 
keK 

subject to L: tk ~ 1 (i=1,2, ... ,p) (9.3) 
keKi 

tk E {0,1} (k E K). (9.4) 

Hence, Z + M is a lower bound on cost( A, C) (where M is, as always, the 
total number of tools). 

9.5.3 Valid inequalities 

Tang and Denardo (1988a) propose the following formulation of the tool 
switching problem (see also Bard (1988». Let Xij = 1 if job i is the j-th 
job in a sequence, and Xij = Ootherwisej let tkj = 1 if tool k is on the 
machine when the j-th job is processed, and 0 otherwisej let Ykj = 1 if tool k 
is setup just before processing the j-th job of the sequence, and 0 otherwise 
(k = 1,2, ... ,ly.fj i,j = 1,2, ... ,N). Then, 

cost( A, C) = minimize L: L: Ykj 
k j 

subject to L: Xij = 1 

L: Xij = 1 
j 

L: akiXij :::; tkj 
, 

L:tkj = C 
k 

Ykj ~ tkj - tk,j-l 

Ykl ~ tkl 

Xij E {0,1} 

tkj, Ykj E {O, 1} 

(j = 1,2, ... ,N) 

(i = 1,2, . .. ,N) 

(k = 1,2, ... ,Mj 

j = 1,2, .. . ,N) 
(j = 1,2, .. . ,N) 

(k = 1,2, ... ,Mj 

j = 2, ... ,N) 

(k = 1,2, ... ,M) 

(i,j = 1,2, .. . ,N) 
(k = 1,2, ... ,Mj 

j = 1,2, .. . ,N). 

(9.5) 

(9.6) 

(9.7) 

(9.8) 

(9.9) 

(9.10) 

(9.11) 

(9.12) 

Call SW this 0-1 programming problem. The linear programming relaxation 
of SW provides a lower bound on cost(A, C). But this bound is extremely 
weak (Tang and Denardo (1988a». One way ofimproving it would be to add 
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more valid constraints to the formulation of SW. For instance, the following 
inequalities are valid for the tool switching problem: 

(k= 1,2, ... ,j{) 

(notice that these trivial inequalities are not even satisfied, in general, by 
an optimal solution to the continuous relaxation of SW). Another family 
of valid inequalities can be derived as follows. Let K be a subset of tools 
for which we know that at least one extra setup is required in the optimal 
sequence (see Theorem 9.3). Then, 

L LYkj ~ IKI + 1 
keK j 

is valid. More generally, if Z is the optimal value of (9.2)-(9.4), then a valid 
constraint is given by: 

L LYkj ~ IKI + Z. 
keK j 

More work is needed on the strengthening of the formulation SW. 
Still another possible approach would be to replace SW by a formulation 

of the tool switching problem using different variables. For instance, one may 
want to consider the "dis aggregated" variables tkij, with the interpretation 
that tkij = 1 if tool k is set up just after finishing the i-th job and is removed 
just after finishing the j-th job. It is easy to write a formulation of our 
problem involving only the variables Xij, tkij and Ykj. It is also relatively easy 
to derive exponentially many valid inequalities using these variables, which 
can in principle be added to the initial formulation in order to strengthen 
it. But our preliminary computational experiments along these lines were 
quite disappointing, in that they did not allow us to noticeably improve our 
previous lower bounds on the optimal value of the problem. 

9.5.4 Lagrangian relaxation 

Lagrangian relaxation is a classical tool in deriving bounds on the opti
mal value of an integer programming problem (see Nemhauser and Wolsey 
(1988)). For problem SW, one may for instance try to relax the groups of 
constraints (9.7) and (9.8). Indeed, as observed by Bard (1988), the resulting 
subproblems are then easy to solve (Bard (1988) uses this relaxation scheme 
in order to produce a sequence of heuristic solutions for the tool switching 
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problem). But it is easy to prove that the optimal value of the Lagrangian 
dual problem obtained in this way is equal to the optimal value of the linear 
relaxation of SW (this is because all extreme points of the system defined 
by (9.5), (9.6), (9.9), (9.10) and the relaxation of (9.11), (9.12) are integral; 
see Nemhauser and Wolsey (1988)). 

The possibility of deriving good lower bounds on cost(A, C) using La
grangian relaxation is an avenue that should be further explored. 
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Appendix: Graph-theoretic definitions 

In this chapter, a graph G is a triple ofthe form (V, E, d), where: 

- V is a finite set; the elements of V are the nodes of G; 

- E is a set of pairs of nodes, called edges; 

- d is a function which assigns a nonnegative length to each pair of nodes; 
we assume that d( u, v) = +00 when {u, v} is not an edge. 

A path in a graph is a sequence of nodes, i.e. a permutation of a subset of V. 
A traveling salesman path (or TS path) is a permutation of V. The length 
of a path (u), . .. , Uk) is by definition: 

d(u}, U2) + d(U2,Ua) + ... + d(Uk-l, Uk). 

Notice, in particular, that the length of such a path is infinite if some pair 
{Ui' Ui+l} is not an edge ofthe graph. The traveling salesman problem on a 
graph G can be stated as follows: find a TS path of minimal length in G. 

With a graph G = (V, E, d), we can associate another graph H = 
(E, 1,6), called the edge-graph of G, and defined as follows: 

- each node of H is an edge of G; 

- a pair {e, j}, with e, fEE, is an edge of H if and only if the edges e 
and f share a common node in G; 

- 6( e, J) = 1 if {e, j} is an edge of H, and 6( e, J) = +00 otherwise. 

Observe that, in an edge-graph, every TS path has length either lEI - 1 
or +00. Consider now the restriction of the traveling salesman problem to 
edge-graphs, that is: 

Input : a graph G. 
Problem P3 : find a TS path of minimal length in the edge-graph of G. 

Equivalently, P3 asks whether there exists a TS path of finite length in the 
edge-graph of G. Bertossi (1981) proved that this problem is' NP-hard. 

We also deal in this chapter with directed graphs. A directed graph is a 
triple (V, U, d), where V is defined as for a graph, and: 

- U is a set of ordered pairs of nodes, called arcs; i.e., U C V X V; 
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- d is a (nonnegative) length function defined on V x V, with the property 
that d( u, v) = +00 when (u, v) is not an arc. 

So, in a directed graph, d( u, v) may differ from d( v, u). The definitions 
of a TS path and of the TS problem extend in a straightforward way for 
directed graphs. 
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