
Production Planning in
Automated Manufacturing
Second, Revised and Enlarged Edition

Springer
Berlin
Heidelberg
New York
Barcelona
Budapest
Hong Kong
London
Milan
Paris
Santa Clara
Singapore
Tokyo

Yves Crama . Alwin G. Oerlemans . Frits C. R. Spieksma

Production Planning in
Automated Manufacturing

Second, Revised and Enlarged Edition

With 7 Figures

, Springer

Dr. Yves Crama
Universi~ de Liege
Facult~ d'Economie, de Gestion
et de Sciences Sociales
Boulevard du Rectorat 7 (B31)
B-4000 Liege, Belgium

Dr. Alwin G. Oerlemans
Ministerie van Financien
Korte Voorhout 7
NL-z511 CW The Hague, The Netherlands

Dr. Frits C. R. Spieksma
Rijksuniversiteit Limburg
Department of Mathematics
P. O. Box 616
NL-62.o0 MD Maastricht, The Netherlands

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaurnahme

Crama, Yves:
Production planning in automated manuracturing : with 40
tables I Yves Crama ; Alwin G. Oerlemans ; Frits C. R.
Spieksma. - 2 .• rev. and ent. ed. - Berlin; Heidelberg; New
York; Barcelona; Budapest; Hong Kong; London; Milan;
Paris; Santa Clara; Singapore; Tokyo: Springer. 1996

ISBN -13:978-3-642-80272-0
NE: Oerlemans. Alwin:; Spiebma. Frits:

ISBN-13:978-3-642-80272-0 e-ISBN-13:978-3-642-80270-6
001: 10.1°°7/978-3-642-8027°-6

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is con­
cerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting. repro­
duction, on microfilm or in any other way. and storage in data banks. Duplication of this publication or parts
thereof is only permitted under the provisions of the German Copyright Law of September 9. 1965. in its
version of June 2.4. 1985. and a copyright fee must always be paid. Violations fall under the prosecution act of
the German Copyright Law.

o Springer-Verlag Berlin· Heidelberg 1994. 1996
Softcover reprint of the hardcover :znd edition 1996

The use of registered n8D1es, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such n8D1es are exempt from the relevant protective laws and regulations and there­
fore free for general use.

SPIN 10540955 42./2.2.02.-5 4 3 2. 1 0 - Printed on acid-free paper

Preface

This monograph is based on the theses ofOerlemans (1992) and Spieksma
(1992). In this second edition a new chapter (Chapter 5) is added which in­
vestigates basic models for tool-loading problems. Further, we have revised
and updated the other chapters. We would like to thank the many individ­
uals, at the University of Limburg or elsewhere, who have contributed to
the genesis of this work. We are especially indebted to Antoon Kolen, who
co-authored Chapters 2 and 9, and who delivered numerous comments on
all other parts of the monograph. We also want to thank Koos Vrieze and
Hans-Jiirgen Bandelt for their constructive remarks.

Contents

Preface

Contents

1 Automated manufacturing
1.1 Introduction....
1.2 Production planning for FMSs

1.2.1 What is an FMS? ...
1.2.2 The hierarchical approach
1.2.3 Tactical Planning ...
1.2.4 Operational planning.

1.3 Overview of the monograph .

2 Throughput rate optimization in the automated assembly of

v

vii

1

3
4
4
5
7

10
10

printed circuit boards 17
2.1 Introduction.................. 19
2.2 Technological environment 20
2.3 The throughput rate optimization problem 23
2.4 Workload balancing .. 25

2.4.1 Subproblem (A) 25
2.4.2 Subproblem (B) 29

2.5 Scheduling of individual machines.
2.5.1 Subproblem (C)
2.5.2 Subproblem (D) .
2.5.3 Subproblem (E)
2.5.4 Subproblem (F) .

2.6 An example

31
32
34

37
39
42

viii Contents

3 Approximation algorithms for three-dimensional assignment
problems with triangle inequalities 47
3.1 Introduction......... 49
3.2 Complexity of T fl. and S fl. 50
3.3 Approximation algorithms . 52
3.4 Computational results . . . 59

4 Scheduling jobs of equal length: complexity, facets and
computational results 63
4.1 Introduction........ 65
4.2 Complexity of SEL 67
4.3 The LP-relaxation of SEL 69
4.4 More facet-defining and valid inequalities for SEL . 79
4.5 A cutting-plane algorithm for SEL 86

5 The tool loading problem: an overview 91
5.1 Introduction................ 93
5.2 Machine flexibility and tool management. . 93
5.3 Modeling the magazine capacity constraint 95

5.3.1 A linear model 95
5.3.2 Nonlinear models 97

5.4 Solving the batch selection problem. 98
5.5 Grouping of parts and tools 100
5.6 Tool switching 102

6 A column generation approach to job grouping 107
6.1 Introduction............. 109
6.2 Lower bounds. 110

6.2.1 The job grouping problem . 110
6.2.2 Column generation 112
6.2.3 The generation subproblem 114
6.2.4 Computation of lower bounds via column generation 116
6.2.5 Lagrangian relaxation 118
6.2.6 Other lower bounds 120

6.3 Upper bounds
6.3.1 Sequential heuristics for grouping.
6.3.2 Set covering heuristics

6.4 Implementation.......
6.5 Computational experiments .

121
122
123
124
127

6.5.1 Generation of problem instances
6.5.2 Computational results

6.6 Summary and conclusions

7 The job grouping problem for flexible manufacturing
systems: some extensions
7.1 Introduction
7.2 Multipleslots

7.2.1 The job grouping problem.
7.2.2 Lower bounds via column generation.
7.2.3 Other lower bounds
7.2.4 Upper bounds
7.2.5 Adjusting the column generation procedure
7.2.6 Computational experiments.
7.2.7 Computational results

7.3 Multiple machines
7.3.1 The job grouping problem ..
7.3.2 Lower bounds via column generation.
7.3.3 Other lower bounds
7 .3.4 Upper bounds.
7.3.5 Adjusting the column generation procedure
7.3.6 Computational experiments
7.3.7 Computational results

7.4 Other extensions
7.5 Summary and conclusions . .

8 A local search approach to job grouping
8.1 Introduction
8.2 Local search environment

8.2.1 Starting solution
8.2.2 Objective function
8.2.3 Neighbourhood structure
8.2.4 Stopping criteria

8.3 Local search approaches
8.3.1 Simple improvement approach
8.3.2 Tabu search approach
8.3.3 Simulated annealing approach.
8.3.4 Variable-depth approach .

8.4 Computational experiments

ix

127
129
137

139
141
141
141
143
144
145
146
148
149
158
158
158
159
160
160
161
162
168
169

171
173
174
175
176
177
177
178
178
178
179
180
181

x

8.4.1 The dataset
8.4.2 Computational results

8.5 Summary and conclusions ..

Contents

181
183
188

9 Minimizing the number of tool switches on a flexible
machine 191
9.1 Introduction......... 193
9.2 Basic results. 196

9.2.1 NP-hardness results 196
9.2.2 Finding the minimum number of setups for a fixed job

sequence
9.3 Heuristics

9.3.1 Traveling salesman heuristics
9.3.2 Block minimization heuristics
9.3.3 Greedy heuristics
9.3.4 Interval heuristic
9.3.5 2-0pt strategies
9.3.6 Load-and-Optimize strategy.

9.4 Computational experiments
9.4.1 Generation of problem instances
9.4.2 Computational results . .

9.5 Lower bounds
9.5.1 Traveling salesman paths
9.5.2 Structures implying extra setups
9.5.3 Valid inequalities
9.5.4 Lagrangian relaxation ..

Appendix: Graph-theoretic definitions

References

198
202
202
204
205
206
207
208
209
209
210
216
216
217
219
220
222

225

Chapter 1

Automated manufacturing

1.1 Introduction

During the last two decades, the impact of automation on manufacturing
has sharply increased. Nowadays, computers can playa role in every aspect
of the production process, ranging from the design of a new product to the
inspection of its quality. In some types of industry automated manufacturing
has a long history, for instance in chemical or oil-refining industries. How­
ever, in the batch-manufacturing industries, like the metalworking industry
or the electronics industry, the concept of automated manufacturing was in­
troduced only in the 1970's, causing a profound effect on manufacturing and
the way it is organized. So-called flexible manufacturing systems (FMSs)
emerged as a critical component in the development towards the "factory of
the future". Our focus will be on this type of industry. On the one hand,
automated manufacturing has a wide variety of potential benefits to offer to
batch-manufacturing industries. One of the most important advantages is
the increased ability to respond to changes in demand. This is important
in view of today's fast changing demand and short product cycles. Other
possible advantages include shorter lead times, lower inventories and higher
machine utilization. On the other hand, it is not an easy task to make an
efficient use of the newly offered possibilities. In particular, planning the
use of a system consisting of a number of connected, complicated machines
using limited resources can constitute a formidable challenge.

In this monograph we intend to illustrate the role that quantitative meth­
ods, and more specifically combinatorial optimization techniques, can play
in the solution of various planning problems encountered in this framework.
As a common thread, we concentrate throughout the monograph on models
arising in the automated assembly of printed circuit boards (PCBs). Chapter
2 describes a typical production process for PCBs, and some of the planning
problems to which this process gives rise. It also presents several optimiza­
tion models which can be used for handling these problems. Two of these
models are studied in more detail in Chapters 3 and 4. Chapters 5 to 9 are
devoted to so-called tool-loading problems. This class of problems occupies a
very central place in the tactical planning phase for most highly automated,
flexible production systems. Chapters 5 to 9 are therefore presented in a
rather general setting, and use a terminology pertaining to flexible manu­
facturing systems rather than to the more particular case of PCB assembly
machines. Section 1.3 hereunder contains a more precise, chapter-by-chapter
overview of the contents of this monograph. But before going into this, we
first propose, in the next section, a very brief review of the literature devoted

4 Chapter 1

to production planning for FMSs.

1.2 Production planning for FMSs

In this section we review some of the literature concerning planning and
control of FMSs. First, we describe an FMS (Subsection 1.2.1). Next, in
Subsection 1.2.2, we review a number of different strategies (or methodolo­
gies) proposed in the literature to cope with FMS planning problems. The
use of a so-called hierarchical approach is advocated in most papers. Sub­
sections 1.2.3 and 1.2.4 focus on planning problems arising at the tactical
and operational level of the decision hierarchy.

1.2.1 What is an FMS?

A flexible manufacturing system is an integrated, computer-controlled com­
plex of numerically controlled machines and automated material handling
devices that can simultaneously process "medium-sized volumes of a variety
of part types (Stecke, 1983). As Gerwin (1982) and Huang and Chen (1986)
point out, FMSs are an attempt to solve the production problem of mid­
volume (200-20,000 parts per year) and midvariety parts, for which neither
the high-production rate transfer lines nor the highly flexible stand-alone
numerically controlled machines are suitable. The aim is to achieve the effi­
ciency of mass-production, while utilizing the flexibility of manual job shop
production.

An FMS consists of a number of machines or work stations that are used
to perform operations on parts. Each operation requires a number of tools,
that can be stored in the limited capacity tool magazine of the machines.
An automatic tool interchanging device quickly interchanges the tools dur­
ing production. This rapid interchange facility enables a machine to perform
several operations with virtually no setup time between operations, provided
that the tools needed for these operations are present in the tool magazine.
(We will see in the remainder of this monograph that in PCB assembly sys­
tems the so-called feeders, from which electronic components to be mounted
on the PCB are fed to the machine, playa very similar role to that of tools
in a classical FMS.) Parts are moved automatically to the machines by a
transportation system or a Material Handling System (MHS). 'A number of
buffer places or an Automated Storage and Retrieval System (ASRS) are
also added to the system, either at a central location or at each machine.
In some FMSs, tools are also stored at a central tool store and delivered to

Section 1.2.2 5

machines by a special delivery system (Buzacott and Yao, 1986). Finally, a
network of supervisory computers takes care of the control of tools, parts,
MHS and machines. The development of FMSs goes along with the other
developments in automated manufacturing. The first systems appeared in
the 1960's; one of the earliest FMSs, which was designed to process constant
speed drive housings for aircraft, was installed by Sunstrand in 1964 (Huang
and Chen, 1986). In the late 1970's more systems were developed, while
the last decade was mainly devoted to refinement of the systems. Emphasis
has shifted from hardware issues to the development of control systems and
refinement of the software packages (Huang and Chen, 1986). A number of
authors have written excellent books in which detailed descriptions of FMSs
are given (Ranky, 1983; Charles Stark Draper Laboratory, 1984; Hartley,
1984; Warnecke and Steinhilper, 1985). Also, several authors have given
classifications of FMSs (Groover, 1980; Dupont-Gatelmand, 1982; Browne,
Dubois, Rathmill, Sethi and Stecke, 1984).

1.2.2 The hierarchical approach

As already pointed out, substantial benefits can be gained by using FMSs.
However, these benefits can only be obtained if the FMS is properly imple­
mented and managed. The successful implementation of an FMS requires
effective solutions to the many technical, organizational and planning prob­
lems that arise when a manufacturer wants to introduce flexible manufactur­
ing technology. Several authors have presented methodologies for and clas­
sification of FMS design, planning, scheduling and control problems (Suri
and Whitney, 1984; Kusiak, 1985a; Stecke, 1985; Suri, 1985; Buzacott and
Yao, 1986; Kusiak, 1986; Van Looveren, Gelders and Van Wassenhove, 1986;
Singhal, Fine, Meredith and Suri, 1987; Stecke, 1988), which are sometimes
complementary. Most surveys describe some kind of hierarchical decision
structure, relating to a variety of decisions that have to be taken concerning
long-term, medium-term or short-term decisions. One of the main reasons
for decomposing the general planning problem is that this problem is too
complex to be solved globally. In the decomposition schemes, a number of
hierarchically coupled subproblems are identified, each of which is easier to
solve than the global problem. By solving these subproblems consecutively,
a solution to the global problem can be found. Of course, one cannot expect
this solution to be globally optimal, even if all subproblems are solved to
optimality. Nevertheless, the hierarchical approach seems to be a fertile and
appealing way to tackle hard problems. The differences between the dif-

6 Chapter 1

ferent methodologies mentioned before concern the number of levels or the
interpretation of a specific level. We now discuss some general classification
schemes. In our discussion we basically use the framework of Van Looveren
et al. (1986). They rely on the classical three level view ofthe organization
(Holstein, 1968) to identify subproblems, and thus establish three levels of
decision making, namely the strategic, tactical and operational levels. The
strategic level relates to long-term decisions taken by the top management,
which influence the basic flexibility of the FMS. Problems involved concern
the design and selection of the equipment and of the products that have to be
manufactured. On the tactical level, the medium-term planning problems
are addressed. Decisions taken at this level concern the off-line planning
of the production system. Van Looveren et al. (1986) distinguish on this
level between the batching problem and the loading problem. The bat ching
problem is concerned with the splitting of the production orders into batches
such that orders are performed on time given the limited available resources.
The loading problem takes care of the actual setup of the system given the
batches that are formed. Planning on the operational level is concerned
with the detailed decision making required for the real-time operation of the
system. A release strategy has to be developed, in which one decides which
parts are fed into the system (release problem). Next the dispatching problem
has to be solved to decide on the actual use of the production resources like
machines, buffers and the MHS. Buzacott and Yao (1986) give a classification
of analytical models that can be used for establishing basic design concepts,
detailed design, scheduling and control. Suri and Whitney (1984) describe in
detail how to integrate the FMS software and hardware in the organizational
hierarchy. They emphasize the value of the decision support systems as an
integral part of the FMS. Stecke (1985) distinguishes four types of problems:
design, planning, scheduling and control. This description closely fits to the
decision structure of Van Looveren et al. (1986). Stecke and Solberg (1981),
Stecke (1983; 1988) and Berrada and Stecke (1986)) have performed detailed
studies on a number of these subproblems. Kusiak (1986) makes a distinc­
tion between design and operational problems. The former relate to strategic
decisions concerning the economic justification of the system and the design
and selection of parts and equipment. The term operational refers to prob­
lems on the tactical and operational levels, as defined by Van Looveren et al.
(1986). Kusiak (1986) splits the operational problems into four sublevels,
that consider aggregate planning, resource grouping, disaggregate planning
(bat ching and loading) and scheduling of equipments. Kiran and Tansel
(1986) use a five level decision hierarchy linked to that of Van Looveren

Section 1.2.3 7

et al. (1986). They distinguish between design, aggregate planning, sys­
tem setup, scheduling and control, where design concerns the strategic level,
aggregate planning and system setup take place on the tactical level and
scheduling and control are on the operational level. Singhal, Fine, Meredith
and Suri (1987) discuss the problems brought forward by Buzacott and Yao
(1986) and discuss the role of MSjOR techniques in the design, operation
and control of automated manufacturing systems. Zijm (1988) also discusses
problems related to the justification, design and operation of FMSs and gives
an overview of related literature. Jaikumar and Van Wassenhove (1989) give
a different outlook on FMS problems. They also present a three level model
for strategic, tactical and operational planning. But, instead of stressing the
complexity of FMS problems, they emphasize the use of simple models. They
argue that scheduling theory and algorithms are quite sufficient for the task.
Several other authors have used the hierarchy presented by Van Looveren
et al. (1986) (see Aanen (1988), Van Vliet and Van Wassenhove (1989) and
Zeestraten (1989». A large number of mathematical and methodological
tools have been used to describe and solve FMS problems on the strategic,
tactical and operational level. The basic tools and techniques are (see e.g.
Kusiak (1986»: (1) Mathematical programming; (2) Simulation; (3) Queu­
ing networks; (4) Markov processes; (5) Petri nets; (6) Artificial intelligence;
(7) Perturbation analysis.

In this monograph we use mathematical programming techniques to solve
problems arising at the tactical and operational level in planning an FMS.
Let us therefore focus in the next subsection on the specific production
planning problems arising at these levels.

1.2.3 Tactical planning

A lot of efforts have been devoted to tactical planning problems for FMSs.
In this subsection we review several solution approaches to tactical planning
problems. Special attention is given to the treatment of tooling restrictions,
because these problems are the main focus of chapters 5 - 9 of this mono­
graph.

Van Looveren et al. (1986) split tactical planning into a batching prob­
lem and a loading problem. The batching problem concerns the p~titioning
of the parts that must be produced into batches, taking into account the due
dates of the parts and the availability of fixtures and pallets. The production
resources are also split into a number of b~tches. Given these batches, the
loading problem is solved, i.e. one decides in more detail how the batches

8 Chapter 1

are to be manufactured. Machines and tools may be pooled in groups that
perform the same operations, parts are assigned to machine groups and the
available fixtures and pallets are assigned to parts. Stecke (1983) refers to
tactical planning as the system setup problem. She considers five subprob­
lems: (1) Part type selection problem; (2) Machine grouping problem; (3)
Production ratio (part mix) problem; (4) Resource allocation problem; (5)
Loading problem. In the part type selection problem a subset of parts is de­
termined for immediate production. Grouping of the machines into groups of
identical machines is pursued to increase system performance (see Stecke and
Solberg (1981) and Berrada and Stecke (1986)). The production ratio prob­
lem decides on the ratios in which the parts that are selected are produced.
Allocation of pallets and fixtures takes place in the resource allocation prob­
lem. The loading problem concerns the allocation of operations (that have
to be performed on selected parts) and tools among the machines, subject
to technological constraints such as the capacity of the tool magazine. A lot
of attention has been devoted to the solution of these subproblems; we now
review some important contributions in this area.

In Stecke (1983) nonlinear 0-1 mixed-integer models are proposed for the
grouping and the loading problems. Linearization techniques are used for
solving these problems. Berrada and Stecke (1986) develop a branch-and­
bound procedure for solving the loading problem. Whitney and Gaul (1985)
propose a sequential decision procedure for solving the batching (part type
selection) problem. They sequentially assign part types to batches according
to a probabilistic function, which is dependent on the due date of the part,
the tool requirements of the part and an index describing whether a part is
easy to balance with parts already selected. Chakravartyand Shtub (1984)
give several mixed-integer programming models for batching and loading
problems. Kusiak (1985c) also uses group technology approaches for group­
ing parts into families (see also Kumar, Kusiak and Vanelli (1986)). Am­
mons, Lofgren and McGinnis (1985) present a mixed-integer formulation for
a large machine loading problem and propose three heuristics for solving
the problem. Rajagopalan (1985; 1986) proposes mixed-integer program­
ming formulations for the part type selection, production ratio and loading
problems. The first formulation is used to obtain an optimal part-mix for
one planning period. A second formulation is presented to get a production
plan for the entire period, which is optimal with respect to the total com­
pletion time (including processing and setup time). Two types of sequential
heuristics are presented to solve the formulations. Part type priorities are
determined by considering either the number of tool slots required or the

Section 1.2.3 9

processing times on the different machines. Hwang (1986) formulates a 0-1
integer programming model for the part type selection problem. A batch is
formed by maximizing the number of parts that can be processed given the
aggregate tool magazine capacity of the machines. In Hwang and Shogan
(1989) this study is extended and Lagrangian relaxation approaches are com­
pared to solve the problem. Kiran and Tansel (1986) give an integer pro­
gramming formulation for the system setup problem. They consider the part
type selection, production ratio, resource allocation and loading problems.
The objective is to maximize the number of part types produced during the
following planning period. All parts of one part type must be processed in
one planning period. Kiran and Tansel (1986) propose to solve the integer
programming formulation using decomposition techniques. Stecke and Kim
(1988) study the part type selection and production ratio problem. They
propose a so-called flexible approach. Instead of forming batches, parts 'flow
gradually'in the system. Tools can be replaced during production and not
only at the start of a planning period. This offers the possibility to replace
tools on some machines while production continues on the other machines.
The objective is to balance the workloads of the machines. As soon as the
production requirements of a part type are reached the model is solved again
to determine new production ratios. Simulations are performed to compare
the flexible and various bat ching approaches (Rajagopalan, 1985; Whitney
and Gaul, 1985; Hwang, 1986). System utilization appears to be higher for
the flexible approach for the types of FMSs considered. Jaikumar and Van
Wassenhove (1989) propose a three level model. On the first level the parts
selected for production on the FMS and production requirements are set. A
mixed-integer program is proposed that is solved by rounding off the solution
values of the linear relaxation. The part type selection and loading prob­
lems are solved on the second level. The objective is to maximize machine
utilization. The scheduling problem is solved at the third level. Feedback
mechanisms provide feasibility of the solutions on all levels. Kim and Yano
(1992) also describe an iterative approach that solves the part type selection,
machine grouping and loading problems.

The most discussed planning problems are the part. type selection problem
(often solved simultaneously with the production ratio problem) and the
loading problem. Much of the present monograph, in particular Chapters 5
- 9, will concentrate on tool loading models; for a further discussion of the
topic we refer to these chapters and the references therein.

10 Chapter 1

1.2.4 Operational planning

Operational planning is concerned with short-term decisions and real-time
scheduling of the system. Van Looveren et al. (1986) distinguish a release
and a dispatching problem. The release problem decides on the release strat­
egy that controls the flow of parts into the system. This flow is limited for
instance by the availability of pallets and fixtures. The dispatching prob­
lem relates to decisions concerning the use of machines, buffers and MHS.
Procedures that have to be carried out in case of machine or system failure
are taken care of within the dispatching problem. Stecke (1983) gives a sim­
ilar division of operational problems into scheduling and control problems.
Scheduling problems concern the flow of parts through the system once it
has been set up (at the tactical level). Control problems are associated
with monitoring the system and keeping track of production to be sure that
requirements and due dates are met.

Due to the huge number of interactions and the possibility of distur­
bances, the operational problems are complex. Simulation is often used to
determine the performance of solution procedures for the release and dis­
patching problem. Chang, Sullivan, Bagchi and Wilson (1985) describe the
dispatching problem as a mixed-integer programming model, which is solved
using heuristics (see also Greene and Sadowski (1986) and Bastos (1988».

The dispatching problem is often solved using (simple) dispatching rules.
The purpose of these rules is to generate feasible schedules, not necessarily
optimal ones. A lot of attention has been paid to the evaluation of such
scheduling rules (see e.g. Panwalker and Iskander (1977), Stecke and Solberg
(1981), Akella, Choong and Gershwin (1984), Shanker and Tzen (1985),
Zeestraten (1989) and Montazeri and Van Wassenhove (1990». Zijm (1988)
and Blazewicz, Finke, Haupt and Schmidt (1988) give an overview on new
trends in scheduling, in particular as they relate to FMS scheduling. A
strong interdependence exists b~tween tactical and operational planning.
In Spieksma, Vrieze and Oerlemans (1990) a model is presented that can
be used for simultaneously formulating the system setup and scheduling
problems.

1.3 Overview of the monograph

We have seen that FMS planning problems have a complex nature. In the
previous section we presented an overview of hierarchical approaches to the
planning process. Using a hierarchical framework may be helpful for iden-

Section 1.3 11

tifying and understanding the fundamental underlying problems. In this
monograph a number of such subproblems are analyzed. In Chapter 2, a
hierarchical procedure is presented to solve a real-world production problem
in the electronics industry. Each of Chapters 3 and 4 deals more extensively
with a specific subproblem arising in this hierarchy. Chapter 5 investigates
basic models for tool-loading problems. In Chapters 6 - 9 two FMS tool load­
ing problems are studied in detail. The job grouping problem is discussed
in Chapters 6, 7 and 8. In Chapter 9 another loading problem is studied,
namely the problem of minimizing the number of tool switches. We take
now a short walk along these chapters.

In Chapter 2, a throughput rate (production rate) optimization problem
for the automated assembly of printed circuit boards (PCBs) is investigated.
PCBs are widely applied in consumer electronics (e.g. computers and hi-fi)
and the professional industry (e.g. telecommunications). The production
of PCBs heavily relies on the use of CNC machines and the technology is
continuously updated (Mullins, 1990). As mentioned by Van Laarhoven and
Zijm (1993) production preparation for the assembly of PCBs is comparable
to the system setup problem in (other) FMSs, although the type of industry
is quite different from the metal working industry, which is the main area
of application for FMSs. We assume that the part type selection problem
has been solved (only one part type will be produced), as well as the ma­
chine grouping problem (a line of machines is available). What remains to
be solved is a loading problem, which consists of the assignment of parts and
equipments to the machines, taking some sequencing aspects into account.
A more detailed description is as follows. A line of machines is devoted to
the assembly of one type of PCBs. An automated transport band is used
to carry each PCB from one machine to the next. The assembly of an indi­
vidual PCB consists of inserting electronic components of prespecified types
into prescribed locations on the board. In order to handle the components,
each machine is equipped with a device called its arm. This arm picks com­
ponents from so-called feeders, moves to the appropriate locations, inserts
the components into the board and moves back to the feeders to pick new
components. Each feeder delivers components of a certain type (one type
per feeder). Prior to the operation, the feeders are placed in the slots ofthe
machine; each machine has a row of slots available, of which each feeder oc­
cupies 1,2 or even more adjacent slots. A sequence of operations consisting
of picking components from feeders, moving to the appropriate locations,
and inserting them into the board is called a pick-and-place round. Further,
in the system under study, the arm of each machine has three heads. Each

12 Chapter 1

head can carry one component at the time. Consequently, in one pick-and­
place round three components are inserted in the board. Also, in order to be
able to collect a component from a feeder, a head of the arm of the machine
must be provided with some tools or equipments. Every component type can
only be handled by a restrictive set of alternative equipments. We propose to
decompose the resulting planning problem into the following, hierarchically
coupled, subproblems:

(A) determine how many components each machine should insert, and with
what equipment;

(B) assign feeder types to machines;

(C) determine which components each head should insert into the board;

(D) cluster the locations into subsets of size at most three, to be processed
in one pick-and-place round;

(E) determine the sequence of pick-and-place operations to be performed
by each machine;

(F) assign the feeders to the slots.

Subproblems (A) and (B) determine the workload of each machine. The
objective here is to minimize the maximum workload over all machines,
since this is equivalent to maximizing the throughput rate. The remaining
subproblems (C)-(F) deal with the scheduling of individual machines. In
Chapter 2, we model more precisely each of the subproblems (A)-(F) and
we develop heuristic approaches for their solution. The performance of our
approach is tested on a real-world problem instance: 258 components of 39
types have to be inserted in each PCB by a line of three machines.

Chapter 3 in this monograph deals with subproblem (D) from the de­
composition described above. This problem is a special case of the three­
dimensional assignment problem (3DA), which can be described as follows
(see also Balas and Saltzman (1991)). Given are three disjoint n-sets of
points, and nonnegative costs associated with every triple consisting of ex­
actly one point from each set. The problem is to find a minimum-cost
collection of n triples covering each point exactly once. In subproblem (D),
the three disjoint point-sets correspond to the locations where components
have to be inserted by the first, second or third head respectively. The cost
of a triple reflects the travel time of the arm between the corresponding lo­
cations. Instances of subproblem (D) are specially structured instances of

Section 1.3 13

3DA in the sense that the cost of each triple is determined by a distance
defined on the set of all points and satisfying the triangle inequality. We
call T a the special case of 3DA where the cost of a triple is equal to the
sum of the distances between its points, and Sathe case where the cost of
a triple is equal to the sum of the two smallest distances between its points.
We prove in Chapter 3 that Ta as well as sa are NP-hard problems. For
both Ta and sa we present two polynomial-time heuristics based on the
solution of a small number (either two or six) of related two-dimensional as­
signment problems. We prove that these heuristics always deliver a feasible
solution whose cost is at most ~ respectively t times the optimal cost. Com­
putational experiments indicate that the performance of these heuristics is
excellent on randomly generated instances of T a and S 6..

Chapter 4 is devoted to the following problem. Given are n jobs which
have to be processed on a single machine within a fixed timespan 1, 2, ... , T.
The processing time, or length of each job equals p, with p an integer. The
processing cost of each job is an arbitrary function of its start-time, and is
denoted by Cjt, j = 1, ... , n, t = 1, ... , T. The problem is to schedule all jobs
so as to minimize the sum of the processing cost. We refer to this problem
as problem SEL (Scheduling jobs of Equal Length). It should be noted that
SEL is a special case of a very general scheduling problem, say problem S,
considered by Sousa and Wolsey (1992), where the jobs may have arbitrary,
usually distinct, processing times. It is an easy observation that, if {1, ... , n}
is any subset of the jobs occurring in S, and all jobs in {1, ... , n} have the
same length p, then any valid inequality for SEL is also valid for S. This
suggests that the polyhedral description presented in Chapter 4 may prove
useful, not only when all jobs have strictly equal length, but also in case
where the number of distinct lengths is small. SEL is also strongly related
to subproblem (F) in the decomposition described above. This can be seen
as follows: each feeder j requires a certain number of slots, say Pj, depend­
ing on the feeder type; usually, Pj only takes a small number of values, say
Pj E {1, 2, 3}. In order to maximize the throughput rate, it is desirable to
position the feeders close to the locations where the corresponding compo­
nents must be inserted. More precisely, for each combination of feeder j and
slot t a cost-coefficient can be computed which captures the cost of assigning
feeder j to slots t, t + 1, ... , t + Pj -1. It follows that finding a miniJIlum-cost
assignment of feeders to slots is equivalent to solving a scheduling problem
where the number of distinct processing times is small. We prove in Chapter
4 that SEL is NP-hard already for P = 2 and Cjt E {O,1}. On the other
hand, if the number of time-units equals np + c, where C denotes a con-

14 Chapter 1

stant, then the problem is shown to be polynomially solvable. We also study
a 0-1 programming formulation of SEL from a polyhedral point of view.
In particular, we show that all facets defined by set-packing inequalities
have been previously listed by Sousa and Wolsey (1992). Two more classes
of facet-defining inequalities (one of them exponentially large) are derived.
The separation problem for these inequalities is solvable in polynomial time.
Further, we show that for some special objective functions the inequalities
in the LP-relaxation suffice to arrive at an integral solution. We also present
some computational results on randomly generated problem instances.

Chapter 5 presents an overview of tool loading problems that arise in
automated manufacturing systems. A basic, one-machine, problem is identi­
fied in which the tool magazine capacity constraint plays an important role.
Different objective functions are considered, giving rise to different problems.
In Chapter 5 the so-called batch selection problem, the job grouping problem
and the tool switching problem are introduced and discussed.

In Chapter 6, the job grouping problem is studied in detail. This specific
loading problem arises at the tactical level in batch-industries. We present a
model which aims at minimizing the number of machine setups. We assume
that a number of jobs must processed on a machine. Each job requires a
set of tools, which have to be present in the limited capacity tool magazine
of the machine when the job is executed. We say that a group (batch) of
jobs is feasible if, together, these jobs do not require more tools than can be
placed in the tool magazine of the machine. Each tool is assumed to require
one slot in the tool magazine. The job grouping problem is to partition
the jobs into a minimum number of feasible groups. As noticed for instance
by Bard (1988) for a closely related problem (the tool switching problem
to be discussed in Chapter 9), an important occurence of the job grouping
problem arises in the planning phase of the PCB assembly process. Suppose
several types of PCBs are produced by an automated placement machine
(or a line of such machines). For each type of PCB, a certain collection
of component feeders must be placed on the machine before boards of that
type can be produced. As the machine can only hold a limited number of
feeders, it is usually necessary to replace some feeders when switching from
the production of one type of boards to that of another type. Exchanging
feeders is a time-consuming operation and it is therefore important to deter­
mine a production sequence which minimizes the number of "feeder-setups".
Identifying the feeders with tools and the PCBs with jobs, one can see that
this type of situation gives rise to either a job grouping problem or to a tool
switching problem (to be discussed below), depending on the characteris-

Section 1.3 15

tics of the production environment. A number of authors have suggested
solution approaches for the problem (Hirabayashi et al., 1984; Whitney and
Gaul, 1985; Hwang, 1986; Raj agopalan , 1986; Tang and Denardo, 1988b),
but no strong lower bounds on the optimal number of groups were obtained
until now. We rely on a set covering formulation of the problem (Hirabayashi
et al., 1984), and we solve the linear relaxation of this formulation in order
to compute tight lower bounds. Since the number of variables is potentially
huge, we use a column generation approach. We also describe some fast and
simple heuristics for the job grouping problem. The result of our compu­
tational experiments on 550 randomly generated instances is that the lower
bound is extremely strong: for all instances tested, the lower bound is opti­
mal. The overall quality of the heuristic solutions appears to be very good
as well.

Chapter 7 discusses a number of extensions of the previous job grouping
model. First we consider the job grouping problem for one machine when
tools have different sizes (i.e., may require several slots in the tool magazine).
Then we study the problem in case several machines are needed. The lower
and upper bounding procedures described in Chapter 6 are generalized so
as to apply to these cases as well. We present the results of computational
experiments that were performed on 580 randomly generated instances. It
appears that the lower bound is very strong and that the conclusions of
Chapter 6 can be largely extended to this broader class of problems.

In Chapter 8 we continue our study of the job grouping problem. Atten­
tion is focused on deriving better upper bounds for the problem. A study is
performed to determine the possibilities offered by local search approaches.
Local search approaches explore the neighbourhood of a current solution
in a smart way in order to improve this solution. Four local search ap­
proaches, viz. a simple improvement, tabu search, simulated annealing and
variable-depth approach are tested. Experiments are conducted to assess the
influence of the choice of starting solutions, objective functions, neighbour­
hood structures and stopping criteria. Computational experiments show
that a majority of instances for which other (simple) heuristic procedures
(presented in Chapters 6 and 7) do not produce optimal solutions can be
solved optimally using a local search approach. The choice of starting solu­
tion, objective function and neighbourhood structure seems to have'far more
impact on the solution quality than the local search approach itself, as long
as some kind of local optimum evading strategy is used.

Chapter 9 analyzes another loading problem arising in FMS planning,
namely the tool switching problem. A batch of jobs have to be successively

16 Chapter 1

processed on a single flexible machine. Each job requires a subset of tools,
which have to be placed in the limited capacity tool magazine of the ma­
chine before the job can be processed. The total number of tools needed
exceed the capacity of the tool magazine. Hence, it is sometimes neces­
sary to change tools between two jobs in a sequence. The tool switching
problem is now to determine a job sequence and an associated sequence of
loadings for the tool magazine, such that the total number of tool switches is
minimized. This problem becomes especially crucial when the time needed
to change a tool is significant with respect to the processing times of the
parts, or when many small batches of different parts must be processed in
succession. These phenomena have been observed in the metal-working in­
dustry by several authors. As mentioned above in our overview of Chapter
6, the problem also plays a prominent role in production planning for PCBs;
Bard (1988) and Tang and Denardo (1988a) have specifically studied the
tool switching problem. In this chapter the problem is revisited, both from
a theoretical and from a computational viewpoint. Basic results concerning
the computational complexity of the problem are established. For instance,
we show that the problem is already NP-hard when the tool magazine ca­
pacity is 2, and we provide a new proof of the fact that, for each fixed job
sequence, an optimal sequence of tool loadings can be found in polynomial
time. Links between the problem and well-known combinatorial optimization
problems (traveling salesman, block minimization, interval matrix recogni­
tion, etc.) are established and several heuristics are presented which exploit
these special structures. Computational results are presented to compare
the behaviour of the eight heuristic procedures. Also the influence of local
improvement strategies is computationally assessed.

Chapter 2

Throughput rate
optimization in the
automated assembly of
printed circuit boards

2.1 Introduction

The electronics industry relies heavily on numerically controlled machines
for the placement of electronic components on the surface of printed circuit
boards (PCB). These placement (or mounting, or pick-and-place) machines
automatically insert components into PCB's, in a sequence determined by
the input program. The most recent among them are characterized by high
levels of accuracy and speed, but their throughput rates still appear to be
extremely sensitive to the quality of the instructions. On the other hand,
the effective programming of the machines becomes steadily more difficult
in view of the increasing sophistication of the available technology. The
development of optimization procedures allowing the efficient operation of
such placement machines therefore provides an exciting challenge for the
operations research community, as witnessed by, e.g., the recent papers by
Ahmadi, Grotzinger and Johnson (1988), Ball and Magazine (1988), and
Leiprua and Nevalainen (1989).

In this chapter we propose a hierarchical approach to the problem of
optimizing the throughput rate of a line of several placement machines de­
voted to the assembly of a single product. As usual in the study of flexible
systems, the high complexity of the problem suggests its decomposition into
more manageable subproblems, and accepting the solution of each subprob­
lem as the starting point for the next one. Of course, this methodology
cannot guarantee the global optimality of the final solution, even assuming
that all subproblems are solved to optimality. This is even more true in the
present case, where most subproblems themselves turn out to be NP-hard,
and hence can only be approximately solved by heuristic procedures. Never­
theless, such hierarchical approaches have previously proved to deliver good
quality solutions to similarly hard problems (e.g. in VLSI-designj see Korte
(1989)). They also offer the advantage of providing precise analytical models
for the various facets of the global problem (see, for example, Buzacott and
Yao (1986) for a discussion of analytical models in FMS).

Our approach has been tested on some industrial problems, but more
experimentation would be required in order to precisely assess the quality of
its performance and its range of applicability. In particular, as pointed out
by one of the referees, the validity of some of our models is conditioned by
the validity of some exogenous assumptions about the nature of instances
"coming up in practice" (see, for instance, Subsection 2.4.1). Even though
these assumptions were fulfilled in the industrial settings that motivated our
study, they may well fail to be satisfied in other practical situations. This

20 Chapter 2

would then invalidate the use of the corresponding models. However, we
believe that the hierarchical scheme and most of the techniques presented
in this chapter would nevertheless remain applicable for a wide range of
problem instances.

We now give a brief outline of the chapter. The next section contains a
more detailed description of the technological environment, and Section 2.3
provides a precise statement of the problem and a brief account of previous
related work. Sections 2.4 and 2.5 present our approach to the solution of the
throughput rate optimization problem. Section 2.4 addresses the workload
balancing problem for the line of machines, and Section 2.5 deals with the
optimal sequencing of operations for individual machines. Both sections
present mathematical models and heuristic solution methods for the various
subproblems arising in our decomposition of the global problem. Finally, in
Section 2.6 we describe the results supplied by our approach on a practical
problem instance.

2.2 Technological environment

In this chapter, we are concerned with the automated assembly of a num­
ber of identical PCB's. For our purpose, the assembly of a PCB consists
of the insertion of electronic components of prespecified types (indexed by
1, ... , T) into prespecified locations (indexed by 1, ... , N) on a board. Prior
to operations, the components of different types are collected on different
feeders (one type per feeder). Feeders are used by the placement machines
as described below. We denote by Nt the number of components of type
t (t = 1, .. . ,T). So, N = '£,[=1 Nt.

We assume that a line of M placement machines is devoted to the assem­
bly of the PCB's. The machines we have in mind are of the CSM (Component
Surface Mounting) family. They feature a worktable, a number S of feeder
slots, and three pick-and-place heads (see Figure 2.1).

The PCB is carried from one machine to the next by an automatic trans­
portband until it comes to rest on the worktable. It stays motionless during
the mounting operations.

The feeder slots are fixed to two opposite sides of the worktable, S /2
of them on each side. The feeders containing the components to be placed
by the machine must be loaded in the slots before the mounting begins.
Depending on its type, each feeder may require 1,2, or even more adjacent
slots.

Section 2.2 21

Arm

----~----PCB

Heads---I--~T1TTIT

, ----Worktable

V Feeder slots
Feeders

Figure 2.1: Schematic representation of a placement machine

The pick-and-place heads are numbered from 1 to 3M, with heads 3m-2,
3m - 1 and 3m on machine m (but, for short, we shall also refer to heads
1,2 and 3 of each machine). They are fixed along a same arm which always
remains parallel to the side of the worktable supporting the feeder slots. The
arm can move in a horizontal plane above the worktable. It can perform
vertical moves to allow the heads to pick components from the feeders or to
insert components into the board.

Each head can carry at most one component at a time. It must be
equipped with certain tools (chucks and nozzles) before it can handle any
components. The collection of tools necessary to process a given component
we call equipment. With every component type is associated a restricted set
of alternative equipments by which it can be handled. In most situations,
four or five equipments suffice to mount all component types. Changing
the equipment of a head can be done either manually or automatically, de­
pending on the technology (notice that, on certain types of machines, an
equipment change can be performed automatically for heads 1 and 2, but
only manually for head 3). In either case, an equipment change is a time­
consuming operation.

22 Chapter 2

Consider now a typical pick-and-place operation, during which the ma­
chine must place components of types i, j and k using heads 1, 2 and 3,
respectively. Suppose, for instance, that these components are to be placed
in the order j, i, k. Such an operation can be decomposed as follows. First,
the arm moves until head 1 is positioned above a feeder of type i. Head 1
picks then a component i. Two more moves of the arm between the feeder
slots allow heads 2 and 3 to pick components j and k. Next, the arm brings
head 2 above the location where component j is to be placed, and the in­
sertion is performed. The same operation is subsequently repeated for i and
finally for k.

Some remarks are in order concerning such a pick-and-place round. No­
tice that the picking of the components must always be performed by head
1 first, then by head 2, then by head 3 (of course, we may decide in some
rounds to use only one or two heads),.whereas an arbitrary sequence may
be selected for their plC¥:ement. Once a head has been positioned by the
arm above the required feeder slot or location, the time needed to pick or to
place the corresponding component depends on the type of the component,
but is otherwise constant. Thus, on one machine, the only opportunities for
a reduction of the total pick-and-place time reside in a clever sequencing of
the operations and assignment of the feeders to feeder slots.

We have intentionally omitted many details in this brief description of the
placement machines and of their functionning. For example, the insertion
heads have to rotate to a predetermined angle before picking or placing
components; some feeder slots or board locations are unreachable for certain
heads; heads may be unavailable (e.g. broken) or may be assigned fixed
equipments; the arm can only move in a limited number of directions; etc.

Some of these features (unreachable locations, unavailable heads, etc.)
can be easily introduced in our models by setting variables to fixed values,
thus resulting in a simplification of these models. Others will be implicitly
incorporated in the models. For instance, parameters of the models such as
the pick-and-place time or the travel time between board locations will be
assumed to take into account the rotation of the heads and the restricted
moves of the arm. Of course, there remains a possibility that these char­
acteristics could be exploited explicitly to improve the performance of the
machines, but we did not attempt to do so.

Section 2.3 23

2.3 The throughput rate optimization problem

With this description of the technological constraints, we can now state a
global throughput rate optimization problem as follows. Given the specifica­
tions of a PCB and of M placement machines, determine:

(1) an assignment of the components to the M machines;

(2) for each machine, an assignment offeeders to feeder slots;

(3) for each machine, a sequence of pick-and-place rounds, each round
consisting itself of a sequence of at most three component locations
among those assigned to the machine in step (1);

(4) for each machine and for each pick-and-place round, an assignment of
equipment to heads.

These decisions are to be made so that the PCB can be mounted using all
M machines, and so as to minimize the processing time on the bottleneck
machine (Le., the machine with the longest processing time).

In our solution of this problem, we shall also take into account a sec­
ondary criterion, dictated by cost considerations. Because feeders are rather
expensive, it appears desirable (at least, in the practical situations that we
encountered) to minimize the total number offeeders used. Ideally, thus, all
components of a same type should be processed by one machine. We shall
show in Subsection 2.4.2 how this criterion can be accomodated.

This formulation of the throughput rate optimization problem is pat­
terned after a (confidential) report of the Philips Center for Quantitative
Methods (CQM (1988); see also Van Laarhoven and Zijm (1993)). This re­
port proposes a hierarchical decomposition of the problem, and heuristics
for the resulting subproblems. Our decomposition, as well as all heuristics
presented in the next two sections, are different fr()m CQM's. Our heuristics,
in particular, rely more explicitly on the precise mathematical modeling of
the subproblems.

The throughput rate optimization problem is also mentioned by Ball
and Magazine (1988), under somewhat simpler technological conditions. In
particular, each machine has but one pick-and-place head. The' authors
investigate in detail only the sequencing of pick-and-place operations over
one machine (Le., our step (3) above).

Leipiila and Nevalainen (1989) discuss our steps (2) and (3), for a different
type of one-head machines.

24 Chapter 2

Ahmadi et al. (1988) consider the case of one machine featuring two
heads. They address subproblems (2), (3) and (4), but their technological
constraints are very different from ours, and their models do not seem to be
directly applicable in our framework.

In the next two sections we describe our approach to the throughput
rate optimization problem. This approach is based on a decomposition of
the global problem into the following list of subproblems (which thus refines
the original formulation (1)-(4) given before):

(A) determine how many components each machine must mount, and with
what equipments;

(B) assign feeder types to machines;

(C) determine what components each head must mount;

(D) cluster the locations into subsets of size at most three, to be processed
in one pick-and-place round;

(E) determine the sequence of pick-and-place operations to be performed
by each machine;

(F) assign the feeders to feeder slots.

Subproblems (A) and (B) in this list answer together question (1) and part
of question (4) above. Our main concern in solving these two subproblems
will be to achieve an approximate balance of the workload over the line of
machines. This will be done in Section 2.4.

Subproblems (C), (D), (E), (F) address the scheduling of individual ma­
chines, and are dealt with in Section 2.5.

In our computer experiments, the sequence of subproblems (A)-(F) is
solved hierarchically in a single pass (except for (E) and (F); see Section 2.5).
It may be possible to use an iterative solution procedure, and to exploit the
solution of certain subproblems in order to revise previous ones. We have
not further explored these possibilities.

Section 2.4

2.4 Workload balancing

2.4.1 Subproblem (A)

The model

25

We proceed in this phase to a preliminary distribution of the workload over
the machine line, based on the number of equipment changes for each head
and on a rough estimate of the time needed to mount each component. The
latter estimate is computed as follows.

In Section 2.1, we have seen that the time needed to mount a component
of type t (t = 1, ... , T) consists of two terms: a variable term measuring
the travet time of the h.ead, and a constant term Pt representing the total
time spent to pick the component when the head is directly above feeder t,
plus the time to place the component when the head is above the desired
location.

Let now Vt be an estimate of the first variable termj then, Vt + Pt is an
estimate of the mounting time required by each component of type t. Notice
that, in practice, a reasonable value for Vt does not appear too difficult
to come by, e.g. by evaluating the average time required for the arm to
travel from feeder slots to mounting locations. The solution of the model
given below does not appear to be very sensitive to the exact value of Vt.

(In our computer experimentations, we used a constant value v for all Vt,

t = 1, ... , T.) Otherwise, solving the model for a few alternative values of Vt

(t = 1, ... , T) provides different initial solutions for the subsequent phases of
the procedure. If necessary, after all subproblems (A)-(F) have been solved,
a solution to the global problem can be used to adjust the values Vt and
reiterate the whole solution procedure.

Define now two component types to be equivalent if the quantity Vt + Pt

is the same for both types, and if both types can be handled by precisely the
same equipment. This relation induces a partition of the set of components
into C classes, with each class containing components of equivalent types.

We are now almost ready to describe our model. We first introduce a
few more parameters:

Q = number of available equipmentsj
for C = 1, ... , C,

Be = number of components in class Cj
We = common value of Vt + Pt for the types represented in class Cj
Q(c) = set of equipments which can handle the components in class Cj

for h = 1, ... , 3M,
Eh = time required by an equipment change for head h.

The decision variables are: for c = 1, ... , C, for m = 1, ... , M, for h
1, ... ,3M, for q = 1, .. . ,Q:

Xem = number of components of class c to be mounted by machine mj
Zmq = 1 if machine m uses equipment qj

= 0 otherwisej
Th = number of equipment changes required for head hj
W = estimated workload of the bottleneck machine.

The optimization model for subproblem (A) is:

(MA) minimize W
M

subject to 2: Xem = Be

m=l

Xem ~ Be 2: Zmq

qEQ(e}

Q 3m

2: Zmq ~ 2: Th + 3
q=l h=3m-2

C 3m

c=l, ... ,C, (2.1)

c= 1, ... ,Cj

m = 1, ... , M, (2.2)

m = 1, .. . ,M, (2.3)

W ~ 2: WeXcm + 2: EhTh m = 1, ... , M, (2.4)
e=l h=3m-2

Xem ~ 0 integer

Zmq E {O,l}

Th ~ 0 integer

c= 1, ... ,Cj

m = 1, .. . ,M, (2.5)

m=l, ... ,Mj

q=l, ... ,Q,
h = 1, ... ,3M.

(2.6)

(2.7)

Constraints (2.1) express that all components must be mounted. Constraints
(2.2) ensure that machine m is assigned at least one of the equipments in
Q(c) when Xem is nonzero. Constraints (2.3) together with (2.4), (2.7) and
the minimization objective, impose that the number of equipment changes
on each machine be equal to the number of equipments used minus three,
or to zero if the latter quantity becomes negative. The right-handside of
(2.4) evaluates the processing time on machine m (we assume here that

Section 2.4 27

the time needed to bring a new PCB on the worktable, after completion of
the previous one, is always larger than the time required for an equipment
change). Thus, at the optimum of (MA), W is equal to the maximum of
these processing times.

Two comments are in order concerning this model. First, we could have
formulated a similar model using variables Xkm instead of Xcm , with the
in<;lex k running over all component locations, from 1 to N. The advantage
of aggregating the components into classes is that the number of variables is
greatly reduced, and that some flexibility remains for the exact assignment
of operations to heads. This flexibility will be exploited in the solution of
further subproblems. Second, observe that we do not impose any constraint
on the number of feeder slots required by a solution of (MA). This could,
in principle, be done easily, e.g. as in the partitioning model of Ahmadi et
al. (1988), but requires the introduction of a large number of new variables,
resulting again from the disaggregation of classes into types. From a practical
point of view, since we always allocate at most one feeder of each type per
machine (remember the secondary criterion expressed in Section 2.3), the
number of feeder slots never appears to be a restrictive factor; hence the
solutions of (MA) are implement able.

In practice, the number of equipments needed to mount all components is
often smaller than the number of heads available. When this is the case, we
can in general safely assume that no change of equipments will be performed
in the optimal solution of (MA) (since Eh is very large). We may then
replace (MA) by a more restrictive model, obtained by fixing rh = 0 for
h= 1, ... ,3M.

Complexity and solution of model (MA)

Every instance of the well-known set-covering problem can be polynomially
transformed to an instance of (MA) with M = 1, which implies that model
(MA) is already NP-hard when only one machine is available (we assume the
familiarity of the reader with the basic concepts of complexity theory; see, for
example, Garey and Johnson (1979) or Nemhauser and Wolsey (1988); the
proofs of all the complexity results can be found in Crama, Kolen, Oerlemans
and Spieksma (1989».

In spite of this negative result, obtaining solutions of good quality for
(MA) turns out to be easy in practical applications. To understand this
better, notice that the number of variables in these applications is usually
small. The real-world machine line which motivated our study features three

28 Chapter 2

machines. A typical PCB may require the insertion of a few hundred com­
ponents, but these fall into five to ten classes. The number of equipments
needed to mount the board (after deletion of a few clearly redundant ones)
seems rarely to exceed five.· So, we have to deal in (MA) with about 10 to
30 zero-one variables and 15 to 50 integer variables.

In view of these favorable conditions, we take a two-phase approach to
the solution of (MA). In a first phase, we consider the relaxation of (MA)
obtained by omitting the integrality requirement on the x-variables (in con­
straints (2.5)). The resulting mixed-integer program is easily solved by any
commercial branch-and-bound code (one may also envision the development
of a special code for this relaxed model, but this never appeared necessary
in this context).

In the second phase, we fix all r- and z-variables of (MA) to the values
obtained in the optimal solution of the first phase.
In this way we obtain a model of the form:

(MA) minimize W
M

subject to L Xem = Be
m=l

G

c = 1, ... ,C,

W ~ LWexem + Wm m = 1, ... ,M,
e=l

Xcm ~ 0 integer c = 1, .. . ,C;

m=1, ... ,M,

where some variables Xcm are possibly fixed to zero (by constraints (2.2) of
(MA)), and Wm is the total time required for equipment changes on machine
m (m = 1, . .. ,M).

In practice, model (MA) is again relatively easy to solve (even though
one can show by an easy argument that (MA) is NP-hard). If we cannot
solve it optimally, then we simply-round up or down the values assumed by
the x-variables in the optimal solution of the first phase, while preserving
equality in the constraints (2.1).

In our implementation of this solution approach, we a<;tually added a
third phase to the procedure. The goal of this third phase is twofold: 1) to
improve the heuristic solutions found in the first two phases; 2) to generate
alternative "good" solutions of (MA), which can be used as initial solutions
for the subsequent subproblems of our hierarchical approach.

Two type of ideas are applied in the third phase. On the one hand, we

Section 2.4 29

modify "locally" the solutions delivered by phase 1 or 2, e.g. by exchang­
ing the equipments of two machines, or by decreasing the workload of one
machine at the expense of some other machine. On the other hand, we
slightly modify model (MA) by imposing an upperbound on the number of
components assigned to each machine, and we solve this new model.

Running the third phase results in the generation of a few alternative so­
lutions associated with reasonable low estimates of the bottleneck workload.

2.4.2 Subproblem (B)

The model

At the beginning of this phase, we know how many components of each class
are to be mounted on each machine, i.e. the values of the variables Xcm in
model (MA)' Our goal is now to dis aggregate these figures and to determine
how many components of each type must be handled by each machine. The
criterion to make this decision will be the minimization of the number of
feeders required (this is the secondary criterion discussed in Section 2.3).

So, consider now an arbitrary (but fixed) class c. Reorder the types of
the components so that the types of the components contained in class care
indexed by t = 1, ... , R. Recall that Nt is the total number of components of
type t to be placed on the board for all t. To simplify our notations, we also
let Xm = Xcm denote the number of components of class c to be mounted
by machine m. So, E:;l Nt = E~=l Xm = Be. We define the following
decision variables: for t = 1, ... , R, for m = 1, ... , M j

Utm = number of components of type t to be mounted by machine mj

Vtm = 1 if a feeder of type t is required on machine mj

= 0 otherwise.

Our model for subproblem (B) is:

R M
(MB) minimize E E Vtm

t=l m=l
R

subject to E Utm = Xm
t=l
M

E Utm = Nt
m=l

m= 1, ... ,M,

t = 1, ... ,R,

Utm :::; min(Xm, Nt)Vtm t = 1, ... , Rj

m=l, ... ,M,

Utm ~ 0 integer t = 1, ... , Rj

m=l, ... ,M,

Vtm E {0,1} t = 1, ... ,Rj

m=l, ... ,M.

Model (MB) is a so-called pure fixed-charge transportation problem (see
Fisk and McKeown (1979), Nemhauser and Wolsey (1988)).

Another way of thinking about model (MB) is in terms of machine
scheduling. Consider R jobs and M machines, where each job can be pro­
cessed on any machine. Job t needs a processing time Nt (t = 1, ... , R) and
machine m is only available in the interval [0, Xm] (m = 1, ... , M). Recall
that E{;l Nt = E~=l X m · So, if preemption is allowed, there exists a fea­
sible schedule requiring exactly the available time of each machine. Model
(MB) asks for such a schedule minimizing the number of preempted jobs (in
this interpretation, Vtm = 1 if and only if job t is processed on machine m).

Complexity and solution of model (MB)

The well-known partition problem can be polynomially transformed to model
(MB), which implies that (MB) is NP-hard.

Model (MB) can be tackled by a specialized cutting-plane algorithm for
fixed-charge transportation problems (Nemhauser and Wolsey (1988)), but
we choose to use instead a simple heuristic. This heuristic consists in re­
peatedly applying the following rule, until all component types are assigned:

Rule:
Assign the type (say t) with largest number Nt of components to the ma­
chine (say m) with largest availability Xmj if Nt :::; X m , delete type t from
the list, and reduce Xm to Xm - Ntj otherwise, reduce Nt to Nt - X m , and
Xm to o.

Clearly, this heuristic always delivers a feasible solution of (MB), with
value exceeding the optimum of (MB) by at most M - 1 (since, of all the
component types assigned to a machine, at most one is also assigned to
another machine). In other words, for a class c containing R component
types, the heuristic finds an assignment of types to machines requiring at
most R + M - 1 feeders. This performance is likely to be quite satisfactory,
since R is usually large with respect to M.

Section 2.5 31

In situations where duplication of feeders is strictly ruled out, i.e. where
all components of one type must be mounted by the same machine, we re­
place the heuristic rule given above by:

Modified rule:
Assign the type (say t) with largest number Nt of components to the ma­
chine with largest availability Xm; delete type t from the list; reduce Xm to
max(O, Xm - Nt). .

Of course, this modified rule does not, in general, produce a feasible
solution of (MB)' In particular, some machine m may have to mount more
components of class c than the amount Xm determined by subproblem (A),
and the estimated workload W of the bottleneck machine may increase. In
such a case, we continue with the solution supplied by the modified rule. A
possible increase in estimated workload is the price to be paid for imposing
more stringent requirements on the solution.

Before proceeding to the next phase, i.e. the scheduling of individual
machines, we still have to settle one last point concerning the distribution of
the workload over the machines. Namely, the solution of model (MB) tells
us how many components of each type must be processed by each machine
(namely, Utm), but not which ones. Since the latter decision does not seem
to affect very much the quality of our final solution, we neglect to give here
many details about its implementation. Let us simply mention that we rely
on a model aiming at an even dispersion of the components over the PCB for
each machine. The dispersion is measured as follows: we subdivide the PCB
into cells, and we sum up the discrepancies between the expected number of
components in each cell and their actual number. It is then easy to set up an
integer linear programming problem, where the assignment of components
to machines is modelled by 0-1. variables, and the objective corresponds to
dispersion minimization. The optimal solution of this problem determines
completely the final workload distribution.

2.5 Scheduling of individual machines

In this section we concentrate on one individual machine (for simplicity,
we henceforth omit the machine index). Given by subproblem (B) are the
locations (say 1, ... , N) of the components to be mounted by this machine
and their types (1, ... , T). Given by subproblem (A) are the equipments
(1, ... , Q) to be used by the machine, and the number Th of equipment
changes per head.

2.5.1 Subproblem (C)

The model

Our current goal is to determine the distribution of the workload over the
three heads of the machine (a similar "partitioning" problem is treated by
Ahmadi et al. (1988), under quite different technological conditions). This
will be done so as to minimize the number of trips made by the heads
between the feeder slots and the PCB. In other words, we want to minimize
the maximum number of components mounted by a head. In general, this
criterion will only determine how many components each head must pick
and place, but not which ones. The latter indeterminacy will be lifted by
the introduction of a secondary criterion, to be explained at the end of this
subsection.

Here, we are going to use a model very similar to (MA)' Since we are
only interested in the number of components mounted by each head, let us
redefine two components as equivalent if they can be handled by the same
equipments (compare with the definition used in Subsection 2.4.1). This
relation determines C classes of equivalent components. As for subproblem
(MA), we let, for c = 1, ... , C:

Be = number of components in class Cj
Q(c) = set of equipments which can handle the components in class c.

We use the following decision variables: for c = 1, ... , C, for h = 1,2,3, for
q= 1, ... ,Q:

Xeh = number of components of class c to be mounted by head hj
Zhq = 1 if head h uses equipment qj

= 0 otherwisej
V = number of components mounted by the bottleneck head.

The model for subproblem (C) is:

(Me) minimize V
3

subject to L Xeh = Be

h=l

c= 1, ... ,C,

Xeh ~ Be L Zhq C = 1, ... , Cj h = 1,2,3,
qEQ(e)

Q

L Zhq = Th + 1 h = 1,2,3,
q=l

Section 2.5

e
V ~ L:Xch

c=l

Xch ~ 0 integer

Zhq E {0,1}

h = 1,2,3,

c = 1, ... , C; h = 1,2,3,

h = 1,2,3; q = 1, . .. ,Q.

33

(Recall that Th + 1 is the number of equipments allocated to head h by model
(MA».

Complexity and solution of model (Me)

Again, the partition problem is easily transformed to model (Me), implying
that the problem is NP-hard.

Moreover, as was the case for (MA), model (Me) is actually easy to solve
in practice, due to the small number of variables. Here, we can use the same
type of two-phase approach outlined for (MA).

As mentioned earlier, the solution of (Me) does not identify which com­
ponents have to be mounted by each head. To answer the latter question, we
considered different models taking into account the dispersion of the com­
ponents over the board. However, it turned out empirically that a simple
assignment procedure performed at least as well as the more sophisticated
heuristics derived from these models. We describe now this procedure.

Consider a coordinate axis parallel to the arm along which the three
heads are mounted. We orient this axis so that the coordinates of heads 1,
2 and 3 are of the form X, X + k and X + 2k respectively, where k is the
distance between two heads (k > 0). Notice that X is variable, whereas k is
fixed, since the arm cannot rotate.

The idea of our procedure is to assign the component locations with
smallest coordinates to head 1, those with largest coordinates to head 3,
and the remaining ones to head 2. Since this must be done within the
restrictions imposed by (Me), let us consider the values Xch obtained by
solving (Me). Then, for each c, the components of class c to be mounted by
head 1 are chosen to be the XcI components with smallest coordinates among
all components of class c. Similarly, head 3 is assigned the Xc3 components
with largest coordinates among the components of class c, and head 2 is
assigned the remaining ones.

As mentioned before, this heuristic provided good empirical results. The
reason for this good performance may be sought in the fact that the inter­
head distance k is of the same order of magnitude as the length of a typical

34 Chapter 2

PCB. Thus, our simple-minded procedure tends to minimize the distance
travelled by the heads.

2.5.2 Subproblem (D)

The model

For simplicity, we :first consider the case where every head has been assigned
exactly one piece of equipment (i.e., Tl = T2 = T3 = 0 in model (Me)). Thus,
at this point, the components have been partitioned into three groups, with
group h containing the Gh components to be mounted by head h (h = 1,2,3).
Let us further assume that G1 = G2 = G3 = G (if this is not the case, then
we add a number of "dummy" components to the smaller groups). We know
that G is also the minimum number of pick-and-place rounds necessary to
mount all these components. We are now going to determine the composition
of these rounds, with a view to minimizing the total travel time of the arm
supporting the heads.

Suppose that the components in each group have been (arbitrarily) num­
bered 1, ... , G. Consider two components i and j belonging to different
groups, and assume that these components are to be mounted succesively,
in a same round. We denote by dij the time necessary to reposition the arm
between the insertions of i and j. For instance, if i is in group 1, j is in
group 2, and i must be placed before j, then dij is the time required to bring
head 2 above the location of j, starting with head 1 above i.

For a pick-and-place round involving three components i, j, k, we can
arbitrarily choose the order in which these components are mounted (see
Section 2.2). Therefore, an underestimate for the travel time of the arm
between the first and the third placements of this round is given by:

(i) dijk = min{ dij + djk' dik + dkj, dji + dik} if none of i, j, k is a dummy;

(li) dijk = dij if k is a dummy;

(iii) dijk = 0 if at least two of i,j,k are dummies.

Let us introduce the decision variables Uijk, for i,j, k E {1, ... , G}, with
the interpretation: '

Uijk = 1 if components i,j and k, from groups 1,2 and 3, respectively,
are mounted in the same round;

= 0 otherwise.

Section 2.5

Then, our optimization model for subproblem CD) is:

G G G

CMD) minimize EEEdijkUijk
i=lj=lk=l
G G

subjectto EEUijk=1 k=I, ... ,G,
i=l j=l
G G
EEUijk = 1 j = 1, ... ,G,
i=l k=l
G G

EEUijk = 1 i= 1, ... ,G,
j=l k=l
UijkE{O,I} i,j,k=I, ... ,G.

35

An optimal solution of CMD) determines G clusters, of three components
each, such that the sum of the C underestimates of the) travel times "within
clusters" is minimized.

In cases where some or all of the heads have been assigned more than one
piece of equipment in model CMA), we adapt our approach as follows. Let qh
be the first piece of equipment to be used by head hand G h be the number of
components which can be handled by qh among those to be mounted by head
h Ch = 1,2,3). Say for instance that G1 ~ G2 ~ G3 • We can now set up a
model similar to C MD) for the clustering ofthese G1 + G2 + G3 components.
Any feasible solution of this model determines exactly G1 clusters containing
no dummy components. These clusters correspond to our first G1 , pick-and­
place rounds, to be performed by equipments qI, q2 and q3. Next, q1 is
replaced by a new equipment q4, and the process can be repeated with q4,

q2 and q3·

Complexity and solution of CMD)

Model CMD), with arbitrary coefficients dijk, has been studied in the liter­
ature under the name of three-dimensional assignment problem. The prob­
lem is known to'be NP-hard (see Garey and Johnson (1979)). However,
observe that, in our case, the coefficients dijk are of the very sp~cial type
defined by (i)-(iii). Moreover, the travel times dij (i,j = 1, ... , G) are them­
selves far from arbitrary; in particular, they satisfy the triangle inequality:
dij ~ dik + dkj for i,j,k = 1, ... ,G. However, even under these added
restrictions, model (MD) remains NP-hard (Chapter 3 of this monograph).

36 Chapter 2

A number of heuristic and exact algorithms have been proposed to solve
the three-dimensional assignment problem (see, for example, Frieze and
Yadegar (1981) and the references therein). In view of the role of (MD)
as a subproblem in the hierarchy (A)-(F), and of the special structure of its
cost coefficients, we opt here for a specialized heuristic procedure.

Our heuristic works in two phases. We start by solving an (ordinary)
assignment problem, obtained by disregarding the components of the third
group. Thus, we solve:

G G
(API) minimize EEdijUij

i=1 j=1

G

subject to EUij = 1 i = 1, ... ,G,
j=1

G

EUij = 1 j = 1, ... ,G,
i=1

Uij E {O, I} i,j,k= 1, ... ,G,

where dij = ° if either i or j is dummy. An optimal solution u* of (API)
can be computed in time O(G3) (Papadimitriou and Steiglitz (1982)).

Let now A = Hi,j): uij = I}. Thus, A is the set of pairs (i,j) matched
by the solution of (API). The second phase of our heuristic consists in
assigning the (previously disregarded) components of the third group to the
pairs in A. Formally, we solve:

G

(AP2) minimize E E dijkUijk

(i,j)eAk=1

G

subject to E Uijk = 1 (i,j) E A,
k=1

E Uijk = 1
(i,j)eA

Uijk E {O, I}

k= 1, ... ,G,

(i,j) E Aj k = 1., .. . ,G.

The optimal solution of (AP2) can be obtained in time O(G3) and provides a
heuristic solution of (MD)' Frieze and Yadegar (1981) proposed a closely re­
lated heuristic for general3-dimensional assignment problems, and observed
its good empirical performance.
Let f33 denote the optimal value of (AP2). The notation f33 is a reminder

Section 2.5 37

that, in the first phase of our heuristic, we arbitrarily decided to disregard
the components from the third group. Of course, similar procedures could be
defined, and corresponding bounds f31 and f32 would be derived, by initially
disregarding the components from either group 1 or group 2.
In our computer implementations, we compute the three bounds, f3I, f32, f33,
and we retain the clustering of the components corresponding to the smallest
bound. In Chapter 3 of this monograph it is proven that this bound is never
worse than ~ times the optimal value for any instance of (MD)' The 'com­
puter experiments reported in there indicate that the practical performance
of this heuristic is excellent.

2.5.3 Subproblem (E)

The solution of subproblem (D) has supplied a list C1 , ••• , Ca of clusters,
with each cluster containing (at most) three components to be placed in
the same round (if some heads must use more than one piece of equipment,
then we successively consider several such lists, where each list consists of
clusters which can be processed without equipment changes). Subproblem
(E) asks for the sequence of pick-and-place operations to be performed by
the machine, given this list of clusters.

This problem has been studied by Ball and Magazine (1988) and Leipala.
and Nevalainen (1989), for machines featuring only one insertion head. In
both papers, the authors observed that the decisions to be made in subprob­
lem (E) are highly dependent on the assignment of feeders to feeder slots
(i.e. on the solution of our subproblem (F)), and conversely. On the other
hand, a model simultaneously taking into account both subproblems is far
too complicated to be of any practical value.

We therefore choose an approach already suggested by Leipala. and Neva­
lainen (1989). Namely, we first solve subproblem (E)j using this solution as
input, we compute a solution of subproblem (F), which in turn is used to
revise the solution of subproblem (E), and so on. This process is iterated
until some stopping condition is verified.

The models

According to the previous discussion, we need two models for subproblem
(E): the first one to be used when no feeder assignment is yet known, and
the second one taking into account a given feeder assignment. In either case,
we reduce (E) to the solution of a shortest Hamiltonian path problem (see

38 Chapter 2

Lawler, Lenstra, Rinnooy Kan and Shmoys (1985)) over the set of clusters
{Ct, ... , CG}: for i,j = 1, ... , G, we define a cost (travel time) c(i,j) for pro­
cessing Ci immediately before Cj; the problem is then to find a permutation
0' = (O't, ... , O'G) of {1, ... , G} which minimizes

G-1

c(O') = L C(O'i,O'i+d (2.8)
i=1

The definition of c(i,j) depends on the given feeder assignment (if any), as
explained hereunder.

Consider first the situation where feeders are already assigned to feeder
slots, and let Ci, Cj be two arbitrary clusters. In this case, the appropriate
definition of c(i,j)is given by CQM (1988) as follows. Denote by h, l2' l3 the
component locations in Ci, where lh is to be processed by head h (h = 1,2,3).
We assume that the feeder needed for lh is in slot 8h (h = 1,2,3). Similarly,
l4 is the location to be processed by head 1 in cluster Cj, and slot 84 contains
the corresponding feeder (for simplicity, we assume that Ci and Cj consist of
exactly three locations; obvious modifications of our description are required
when this is not the case).

Suppose now for a moment that h, l2 and l3 are to be mounted in the
order 1f' = (1f'}, 1f'2, 1f'3), where (1f'1' 1f'2, 1f'3) is a permutation of {1, 2, 3}. For
this fixed order, we can easily compute the time (say, Cij(1f')) required to carry
out the following operations: starting with head 1 above slot 81, sequentially
pick one component from each of 8}, 82, 83 using heads 1,2,3 respectively;
mount l1l"1' l1l"2' l1l"3' in that order; bring head 1 above slot 84.

Obviously, in an optimal pick-and-place sequence, we would select the
permutation 1f'* of {1, 2, 3} which minimizes Cij(1f'). We accordingly define:
c(i, j) = Cij(1f'*).

Now, if 0' is any permutation of {1, ... , G}, then c(O') (given by (2.8))
is the time required by a complete pick-and-place sequence processing the
clusters in the order (0'1, ... , O'G). The shortest Hamiltonian path problem
with costs Cij thus provides a natural model for subproblem (E). As a last
remark on this model, notice that the computation of Cij(1f') can be simplified
by omitting from its definition those elements which are independent of 1f'

or 0'. Namely, we can use a "modified Cij{ 1f')" defined as the time needed,
starting with head 3 above 83, to bring successively head 1f'1 above l1l"1' head
1f'2 above l1l"2' head 1f'3 above l1l"3 and finally head 1 above 84. '

Let us return now to the initial solution of (E), when the feeder positions
are still unknown. Since this initial sequence will be modified by the subse­
quent iterations of our procedure, it does not seem necessary at this stage

Section 2.5 39

to look for a solution of very high quality (actually, one may even argue
that an initial sequencing of lower quality is desirable since it provides more
flexibility in the next phases of the procedurej see, for example, Leipala. and
Nevalainen (1989) for more comments along this line). Accordingly, we de­
fine the coefficients c(i, j) for our initial traveling salesman problem as rough
estimates of the actual travel times. We experimented with some possible
definitions, which seem to lead to comparable results (in terms of the final
solution obtained). One such definition is as follows. Let 9i and 9j be the
centers of gravity of the clusters Ci and Cj, respectively. Let s be the feeder
slot minimizing the total distance from 9i to s to 9j. Then, c(i,j) is the time
needed for the arm to travel this total distance.

Complexity and solution of the models

The shortest Hamiltonian path problem is closely related to the traveling
salesman problem, and is well-known to be NP-hard, even when the costs
c(i,j) satisfy the triangle inequality (Lawler et al. (1985)). Many heuristics
have been devised for this problem, and we have chosen to experiment with
two ofthe simplest: nearest neighbor (with all possible starting points) and
farthest insertion, which respectively run in O(G3) and O(G2) steps (we
refer to Lawler et al. (1985) for details on these procedures). Both heuristics
produced results of comparable quality.

2.5.4 Subproblem (F)

The model

As input to this subproblem, we are given the types (1, ... , T) and the
locations (1, ... , N) of the components to be mounted, where (1, ... , N) is
the mounting sequence determined by the previous solution of subproblem
(E). Our problem is now to allocate each feeder 1, ... , T to one of the feeder
slots 1, ... , S, so as to minimize the total mounting time (for the sake of
clarity, we first assume that every feeder can be loaded in exactly one slotj
we indicate later how our model can be modified when some feeders require
two or more slots).

We use the decision variables Vts (t = 1, ... , Tj S = 1, ... , S) with the
interpretation:

Vts = 1 if feeder t is loaded in slot Sj
. = 0 otherwise.

40 Chapter 2

These variables must obey the following restrictions, expressing that eve­
ry feeder occupies exactly one slot, and no slot contains two feeders:

s
L Vts = 1 t = 1, ... , T, (2.9)
s=l
T

LVts~1 s=1, ... ,8, (2.10)
t=l

Vts E{0,1} t=1, ... ,Tj s=1, ... ,8. (2.11)

Before describing the other elements of our model, we first introduce some
terminological conventions. We say that a movement of the arm is a feeder­
board movement if it occurs between the last picking and the first placing of
the same round, or between the last placing of a round and the first picking
of the next one. By contrast, a feeder-feeder movement takes place between
two pickings of a same round.

Consider now a fixed solution Vts (t = 1, ... , Tj S = 1, ... ,8) of (2.9)­
(2.11). For the corresponding assignment offeeders to slots, the total mount­
ing time of the PCB can be broken up into three terms:

1) a term 'L,;=1 'L,~=1 atsVts, where ats is the total time spent in feeder­
board movements from or to feeder t, when feeder t is loaded in slot Sj
this term represents the total feeder-board travel timej notice that the
value of each coefficient ats is completely determined by the techno­
logical features of the machine, and by the sequence of pick-and-place
operations to be performed by the machine (i.e., by the solution of
subproblem (E))j

2) a term 'L,~t=l 'L,~s=1 bprtsVprVts, where bprts is the total time spent in
feeder-feeder movements between feeders p and t, when feeder p is in
slot r and feeder t is in slot Sj this term gives the total feeder-feeder
travel timej here again, the coefficients bprts are easily computedj

3) a term accounting for all other operations (picking and placing of all
components, and travel time between placements of the same round)j
for a fixed pick-and-place sequence, this term is independent of Vts'
According to this discussion, our model for subproblem (F) can be
formulated as:

T S T S

(Mp) minimize LLatsVts + L L bprtsVprVts
t=1 s=1 p,t=1 r,s=1

subject to (2.9), (2.10), (2.11).

Section 2.5 41

Problem (MF) is a quadratic assignment problem (see Burkard (1984)).
As mentioned earlier, this formulation can easily be modified to accomodate
additional restrictions. For instance, if feeder t must occupy two slots, we
reinterpret:

Vts = 1 if feeder t is loaded in slots sand s + 1;
= 0 otherwise.

Straightforward restrictions must then be added to (2.9)-(2.11) to preclude
the assignment of any feeder to slot s + 1 when Vts = 1. This can also be
achieved while preserving the quadratic assignment structure of (MF), by
raising all coefficients bp,s+1,t,s to very high values.

As a last remark on (MF), let us observe that this model boils down to
a linear assignment problem for machines featuring only one insertion head.
On the other hand, Leiprua and Nevalainen (1989) proposed a quadratic
assignment formulation of the feeder assignment subproblem (F) for another
type of one-head machines. This discrepancy is obviously due to the different
technologies.

Complexity and solution of (MF)

The quadratic assignment problem is well-known to be NP-hard, and to
be particularly difficult to solve exactly for values of T and S larger than
twenty (Burkard (1984)). A typical instance of (MF) may involve as many as
twenty feeder types and sixty slots, and hence must be tackled by heuristic
methods.

For (MF), we have used a local improvement method, based on pairwise
exchanges of feeders (see Burkard (1984)). This procedure starts with an
initial solution of (2.9)-(2.11), and applies either of the following steps, as
long as they improve the objective function value in (MF):

Step 1 : move a feeder from its current slot to some empty slot;
Step 2 : interchange the slot assignments of two feeders.

To determine an initial assignment of feeders to slots, we proceed in two
phases. First, we solve the assignment problem (MF) obtained by setting all
coefficients bprts to zero in (M F) (this amounts to disregarding the feeder­
feeder movements of the arm). Let v* be an optimal solution of (MF).

Next, we consider those feeders (say 1, ... , P) whose components are only
picked by head 2. Observe that the associated variables Vts (t = 1, ... , P;
s = 1, ... ,8) do not appear in the objective function of (MF), since there

42 Chapter 2

are no feeder-board movements to or from these feeders (Le., ats = 0 for
t = 1, ... , Pj S = 1, ... , S). Consequently, the value ofthese variables in v* is
conditioned only by the constraints (2.9)-(2.11), and may as well be random.
In order to determine more meaningful values for these variables, we solve
the restriction of (MF) obtained by setting Vts = vis for t = P + 1, ... , T and
S = 1, ... , S. It'is easy to see that this again is a linear assignment problem,
aiming at the minimization of the total feeder-feeder travel time under the
partial assignment vis (t = P + 1, ... , Tj S = 1, ... , S). The optinial solution
ofthis problem together with the values vis (t = P + 1, ...) Tj S = 1, ... , S),
provides the initial solution for the improvement procedure described above.

2.6 An example

In this section, we discuss the performance of our heuristics on a problem
instance described in CQM (1988). The placement line under consideration
consists of three machines. The third head is broken and unavailable on
machine 3. The 258 components to be mounted on the PCB are grouped
in 39 types (actually, the PCB is partitioned into three identical blocks, of
86 components eachj we shall make use of this peculiarity in the solution of
subproblem (A)). Three distinct pieces of equipments suffice to handle all
the component typesj moreover, each type can be handled by exactly one of
these three pieces of equipments.

For the sake of comparison, let us mention that CQM (1988) evaluates
to 74, 65 and 81 seconds, respectively, the mounting times required by the
three machines for the actual operations sequence implemented by the plant
(notice that this sequence is not known in full detail, and that these "plant
times" appear to be underestimates). The hierarchical decomposition and
the heuristics developed in CQM (1988) produce a solution with mounting
times 68.41,66.52 and 68.88 seconds for the three machines. A still better
solution is obtained in CQM (1988) after imposing that the equipments used
remain fixed as in the plant situation. Under these conditions, production
times of 66.12,65.25 and 65.47 are achieved on the three machines, i.e. an
improvement of at least 18 percent of the bottleneck time with respect to the
plant solution. To fully appreciate these figures, one should ,also know that
a constant time of 106 seconds is needed for the pick-and-place operations
alone, independently of the production sequence (see Section 2.2). These
unavoidable 106 seconds represent more than half of the total mounting
time required by the CQM solutions.

Section 2.6 43

Subproblem (A)

We now take up our subproblem (A). With a constant estimate of v = 0.3
(secs) for the travel time of the heads between two insertions, the components
fall into five classes, characterized by the parameters in Table 2.1.

Class 1 2 3 4 5
Be 201 27 24 3 3
We 0.6 1.35 0.75 1.65 1.15

Q(c) {1} {2} {3} {3} {3}

Table 2.1 Parameters for subproblem (A)

We set up model (MA) with these parameters and Eh = 2 (h = 1, ... ,8)
(and the obvious modifications implied by the unavailability of head 9). This
model is easily solved by the approach descr~bed in Subsection 2.4.1. Notice
that the relaxation of (MA) obtained by omitting the integrality requirement
for the x-variables has several alternative optima. As expected, Th = 0
(h = 1, ... ,8) in all these optimal solutions, i.e. equipment changes are
ruled out.

As explained in Subsection 2.4.1, the solutions found for subproblem (A)
can be c~nsidered as alternative inputs for the subsequent subproblems in
the decomposition. In the present case, most of these solutions led us to
production plans with processing times of 66 to 68 seconds. To illustrate the
next steps of our approach, we shall concentrate now on a specific solution
of (MA), derived as follows.

We mentioned before that our PCB consists of three identical blocks.
So, rather than solving (MA) for the complete board, we can solve first the
model corresponding to one of the blocks, and eventually multiply all figures
by 3. A workload distribution obtained in that way is displayed in Table
2.2.

Machine 1 2 3
Equipments 1 1,3 1,2

Xcm = number of components Xu = 102 X12 = 57 X13 = 42
of class con X32 = 24 X23' = 27
machine m X42 = 3

XS2 = 3

Table 2.2 Workload distribution

44 Chapter 2

Subproblem (B)

Since all components of class 2 are to be handled by machine 3, and all
components of classes 3, 4, 5 by machine 2, we see that the distribution
shown in Table 2.3 need only be further refined for class 1. Specifically, 28
components types are represented in class 1. The number of components of
each type (1, ... ,28) is given in Table 2.3.

Type 1 2 3 4 5 .6 7 8 9 10 11 12 13 14
Nt 24 18 18 15 12 9 9 9 9 6 6 6 6 6

Type 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Nt 6 6 3 3 3 3 3 3 3 3 3 3 3 3

Table 2.3 Number of components of each type for subproblem (B)

The heuristic rule described in Subsection 2.4.2 produces the assignment
shown in Table 2.4. Observe that each type is assigned to exactly one ma­
chine, and hence exactly one feeder of each type will be needed in the final
solution (in particular, the heuristic delivers here an optimal solution of
(MB)).

Machine Types
1 1,2,3,5,10,11,14,17,20,23,26
2 4,6,8,12,15,18,21,24,27
3 7,9,13,16,19,22,25,28

Table 2.4 Assignment of component types to machines

Subproblem (C)

Since model (Me) attempts to minimize the maximum workload of the heads
(per machine), in this case we obviously find an assignment of the type given
in Table 2.5.

Head 1 2 3 4 5 6 7 8
Equipment 1 1 1 1 1 3 1 2
Number of 34 34 34 29 28 30 42 27

components

Table 2.5 Assignment for subproblem (C)

Section 2.6 45

The components to be mounted by heads 1,2,3,4,5 are further identified
as explained at the end of Subsection 2.5.2. In the present case, this amounts
to assigning to head 1. all components of block 1, to head 2 all components
of block 2, and to head 3 all components of block 3, among those previously
assigned to machine 1.

Subproblem (D)

We now solve the three-dimensional assignment model (MD) for each of the
three machines. Since machine 3 only has two heads, (MD) actually reduces
to the assignment problem (AP1) for this machine, and hence can be solved
exactly (optimal value: 3.26 sees).

For machines 1 and 2, we solve (MD) using the heuristics described
in Subsection 2.5.2. For machine 1, these heuristics supply a very good
clustering of the components (value: 4.95 sees), where each cluster simply
contains corresponding components from each block of the PCB. For machine
2 we obtain a clustering with value 8.95 sees.

Subproblems (E) and (F)

These two subproblems are solved alternately and iteratively for each ma­
chine.

On machine 2, for instance, the first Hamiltonian path (corresponding to
travel times between centers of gravity of the clusters) has value 13.16 sees.
An initial feeder assignment is obtained as in Subsection 2.5.4. The pick­
and-place sequence determined by this assignment and the first Hamiltonian
path corresponds to a total feeder-board time of 14.10 sees and a total feeder­
feeder time of 11.63 sees, for a total travel time of 25.73 sees.

The local improvement procedure is next applied to this initial solu­
tion. In each iteration of this procedure, we sequentially consider all feeders,
and we attempt to perform one of the exchange steps 1 and 2 on each of
them. After four iterations of the procedure, no more improving steps are
found. The corresponding feeder-board and feeder-feeder times are respec­
tively 14.68 sees and 8.62 sees, and hence the previous total travel time is
improved to 23.30 sees.

Taking this feeder assignment into account, a revised Hamiltonian path
with value 14.07 sees is computed. The feeder assignment is in turn modified,
resulting in (after three iterations of the local improvement procedure) a
total travel time of 22.94 sees. No better Hamiltonian path or assignment

46 Chapter 2

are found in the next solutions of subproblems (E) and (F). Therefore, we
adopt this solution for machine 2.

Similar computations are carried out for the other machines. The pick­
and-place sequences obtained in this way correspond to processing times of
63.83,66.27 and 65.82 sees on machines 1,2 and 3 respectively. These times
are comparable to the best ones obtained by CQM.

Acknowledgements
We are grateful to P. van Laarhoven and H. Zijm for introducing us to the
problem, and for providing us with the data (CQM, 1988).

Chapter 3

Approximation algorithms
for three-dimensional
assignment 'problems with
triangle inequalities

3.1 Introduction

Consider the following classical formulation of the (axial) three-dimensional
assignment problem (3DA) (see e.g. Balas and Saltzman (1989)). Given is a
complete tripartite graph Kn,n,n = (IU J U K, (I X J) U (I X K) U (J X K)),
where I, J, K are disjoint sets of size n, and a cost Cijk for each triangle
(i,j,k) E I X J X K. The problem 3DA is to find a subset A of n triangles,
A ~ I X J X K, such that every element of I U J U K occurs in exactly one
triangle of A, and the total cost c(A) = I:(i,j,k)EA Cijk is minimized. Some
recent references to this problem are Balas and Saltzman (1989), Frieze
(1974), Frieze and Yadegar (1981), Hansen and Kaufman (1973).

When one formulates 3DA in graph-theoretic terms, as we just did it, it
is natural to assume that the costs Cijk are not completely arbitrary, but are
rather defined in terms of costs attached to the edges of the graph. More
precisely, we shall restrict our attention in this chapter to the special cases
of 3DA where each edge (u, v) E (I X J) U (I X K) U (J X K) is assigned a
nonnegative length duv , and where the cost of a triangle (i,j, k) E I X Jx K
is defined either by its total length tijk:

tijk = dij + dik + djk' (3.1)

or by Sijk, the sum of the lengths of its two shortest edges:

Sijk = min{dij + dik' dij + djk' dik + djk} (3.2)

(notice that the lengths duv are symmetric: duv = dvu for all (u,v)).

We refer to the problem 3DA with cost coefficients Cijk = tijk, or Cijk =
Sijk. as problem T or S, respectively.

Instances of problem T arise in the scheduling of teaching practices at
colleges of education (Frieze and Yadegar (1981)).

Either T or S can also be used to model a situation encountered in
the production of printed circuit boards by numerically controlled machines
featuring three placement heads (see Chapter 2 of this monograph).

In the latter application (which motivated the present study), the lengths
duv represent travel times of the arm of the machine between locations u and
v, where electronic components are to be inserted. In particular, and even
though the exact definition of these travel times may be quite intricate, the
lengths duv define a distance, i.e. they satisfy the triangle inequalities:

duv ~ duw + dvw for all u, v, wEI U J U K. (3.3)

50 Chapter 3

In the remainder of this chapter, we concentrate on problems T A and
S A, i.e., on the special cases of T and S for which the triangle inequalities
(3.3) hold. We show in Section 3.2 that TA and SA are NP-hard. In Section
3.3, we describe some heuristics for T A and SA, and establish tight bounds
on their worst-case performance. The results of computational experiments
with these heuristics are presented in Section 3.4.

Notice that in Bandelt, Crama and Spieksma (1994) heuristics are pro­
posed and investigated for generalizations of T A and SA to multidimen­
sional assignment problems with so-called decomposable costs. Finally, in
Spieksma and Woeginger (1996), it is proven that a geometric version of TA
remains NP-hard.

3.2 Complexity of T ~ and S ~

The problem 3DA is well-known to be NP-hard, even when the costs Cijk

can only take two distinct values (see e.g. Garey and Johnson (1979) for a
proof). We show now that its special cases TA and SA remain NP-hard
too.

Theorem 3.1 Problem TA is NP-hard.

Proof:
We use the argument presented by Garey and Johnson (1979) to establish the
NP-hardness of the problem Partition into Triangles. Consider an instance
I of 3DA, defined by three sets 10 , Jo, Ko of size n, and Cijk E {O, 1} for all
(i,j,k) E 10 x Jo x Ko.

With I, we associate an instance of TA, as follows. Let M = {(i,j, k):
Cijk = O}, IMI = m, and

1

J
K

=
=
=

10 U {i/(e): e E M, 1= 1,2,3},

Jo U {j/(e): e E M, 1= 1,2,3},

Ko U {k/(e): e E M, 1= 1,2,3},

where i/(e), j/(e), h/(e) (e E M, 1'= 1,2,3) are 9m new elements.
In order to conveniently define the lengths of the edges of the complete

tripartite graph G on 1 U J U K, we first introduce m subgraphs of G. For
each e = (i, j, k) E M, G(e) is the graph represented in Figure 3.1.

Section 3.2 51

i 1(e) kl(e)

~ __ i3(e)

i J k

Figure 3.1

Now for each (u, v) E (Ix J) u(I X K) U(J X K), we let: duv = lif (u, v)
is an edge in some graph G(e) (e EM), and duv = 2 otherwise. Clearly,
the triangle inequalities (3.3) are satisfied by this assignment, so that I, J, K
and the lengths duv together define an instance T of T~.

Observe that every feasible solution of T contains exactly n + 3m tri­
angles, each with cost at least 3. We claim that T has an optimal solution
with value 3n + 9m if and only if I has a solution with value O. We leave
details to the reader (see Garey and Johnson (1979), pp. 68-69). 0

Theorem 3.2 Problem S~ is NP-hard.

Proof:
The proof is similar to the previous one: simply delete from each subgraph
G(e) the edges (il(e), h(e)), (i, h(e)), (jl(e), k3(e)), (j, k3(e)), (i3(e), k1(e)),
(i3(e), k), for all e EM. The resulting instance of S ~ has an optimal solution
with value 2n + 6m if and only if I has a solution with value O. 0

3.3 Approximation algorithms

In this section, we present approximation algorithms for T~ and S~. First,
we recall a definition from Papadimitriou and Steiglitz (1982) (see also Garey
and Johnson (1979)). Consider a minimization problem P, and an algorithm
H which, given any instance I of P, returns a feasible solution H(I) of
I. Denote by c(H(I)) the value of this heuristic solution, and by OPT(I)
the value of an optimal solution of I. Then, H is called an e-approximate
algorithm for P, where e is a nonnegative constant, if:

c(H(I)) ~ (1 + e) OPT (I)

for all instances I of P.
We will show that ~-approximate polynomial-time algorithms exist fo;

problems T ~ and S~. As indicated by our next theorem, the triangle
inequalities (3.3) play an instrumental_role in the proof of such results:

Theorem 3.3 Unless P = NP, there is no e-approximate polynomial algo­
rithm for problems T and S, for any e ~ O.

Proof:
We establish the statement for problem T (the other case being similar).
Assume that there is an e-approximate algorithm for T, say H.
As in the proof of Theorem 3.1, consider an instance I of 3DA with Cijk E
{O,l} for all (i,j,k), the corresponding sets I,J,K, and the subgraphs
G(e)(e EM).
For (u,v) E (I x J) U (I x K) U (J x K), let: duv = 1 if (u,v) is an edge of
G(e)(e EM), and duv = (3n + 9m)e + 2 otherwise. This defines an instance
T of problem T, with the property that T has an optimal solution with value
3n + 9m if and only if I has a solution with value O.

Now, it is easy to see that the e-approximate algorithm H always returns
a solution of T with value 3n + 9m, if there is one (because the second best
solution has value at least (1 + e)(3n + 9m) + 1). Hence, unless P = NP,
H cannot be a polynomial-time algorithm. 0

We describe now informally a polynomial-time heuristic HIJ for problems
T and S. This heuristic was proposed in Chapter 2 of this thesis. The input
to HIJ is the set of edge-lengths duv , where (u, v) E (Ix J)U(IxK)U(JxK),
and III = IJI = IKI = n.
The heuristic proceeds in two phases, first matching the elements of I and J,

Section 3.3 53

and next assigning the elements of K to the pairs thus formed (Frieze and
Yadegar (1981) propose a similar heuristic for the general 3DA problem).
More precisely:

Phase 1. Find an optimal solution x* of (P1):

(P1) minimize L L dijXij
iEI jEJ

subject to L Xij = 1
iEI

LXij = 1
jEJ

Xij E {O,l}

Let M = {(i,j): xij = 1}.

JEJ

i E I

i E I,j E J.

Phase 2. Find an optimal solution y* of (P2):

(P2) minimize L L CijkYijk

(i,j)EMkEK

subject to L Yijk = 1
(i,j)EM

L Yijk = 1
kEK

Yijk E {O,l}

kE K

(i,j) EM

(i,j)EM, kEK,

where Cijk = tijk (respectively Cijk = Sijk) if the problem to be solved is an
instance of T (respectively S).

The feasible solution of T (or S) returned by the heuristic HlJ is A =
{(i,j,k): Yijk = 1}, and its cost is denoted by CIJ.

Notice that both (P1) and (P2) are instances of the classical (two­
dimensional) assignment problem, or weighted bipartite matching problem,
and hence can be solved in O(n3) operations (Papadimitriou and Steiglitz
(1982)). It follows that Hu also runs in time O(n3).

We leave it as an easy exercise to verify that, as suggested by Theorem
3.3, HlJ is not an c-approximate algorithm for either T or S, for any c 2:: 0.

On the other hand, when the lengths duv satisfy the triangle inequalities,
we get:

Theorem 3.4 HlJ is a ~-approximate algorithm for problem T/:!.. More­
over, there exist arbitrary large instances T of TI:!. such that ClJ = ~OPT(T).

54 Chapter 3

Proof:
Let T be an instance of T~. Let M be the matching of I U J found by the
first phase of H IJ, and A be the assignment returned by H IJ.

Consider now an optimal solution of T, say F. With F, we associate
another feasible solution B = {(i, j, k) : (i, j) EM, and (u, j, k) E F for
some u E I}.

We obtain successively:

CIJ L tijk
(i,j,k)EA

~ L tijk
(i,j,k)EB

L (dij + dik + djk)
(i,j,k)EB

< 2 L (dij + djk)
(i,j,k)EB

2 L dij + 2 L djk
(i,j,k)EA (i,j,k)EF

< 2 L (dij + djk)
(i,j,k)EF

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

((3.4) holds because A is optimal for (P2), (3.5) is by definition oftijk, (3.6)
uses the triangle inequality, (3.7) is by definition of B, and (3.8) follows from
optimality of M for (PI)).

By symmetry with (3.8), we can also derive:

CIJ ~ 2 L (dij + dik)
(i,j,k)EF

Now, (3.8) and (3.9) together entail:

CIJ ~ L (2dij + dik + djk)
(i,j,k)EF

3 1
= L ("2dij + "2di j + dik + djk)

(i,j,k)EF

and, using the triangle inequalities to bound ~dij:

3 3
CIJ ~"2 L tijk = "2 OPT(T).

(i,j,k)EF

(3.9)

(3.10)

(3.11)

Section 3.3 55

To see that equality may hold in (3.11), consider first the graph G rep­
resented in Figure 3.2.

2
Zt~---------------------'jt

1 1

1 1

j2~---------------------4i2
2

Figure 3.2

Also indicated in Figure 3.2 are the costs Cuv E {1,2} of the edges of G.
Now, we define an instance T of T Ll as follows. We let 1 = {it, i2}, J =

{j}'h}, K = {k}, k2 }. For (u, v) E (1 X J) U (1 X K) U (J X K), duv is the
length of a shortest path from u to v in G, with respect to the costs Cuv '

It is easy to see that an optimal solution for this instance is F = {i},j2, kt),

(i 2 ,j},k2)}, with OPT(T) = 8.
But HIJ can pick (in Phase 1) M = {(i},jd, (i2,h)), and next (in Phase

2) A = {(ill it, kt), (i2' h, k2)}, with cost CIJ = 12 = ~ OPT(T). Arbitrary
large instances of TLl can be obtained by taking several copies of G, with
very large distances between points in different copies. 0

The previous result also holds mutatis mutandis for problem SLl:

Theorem 3.5 HIJ is a !-approximate algorithm for problem SLl. More­
over, there exist arbitrary large instancesS of SLl such that CIJ = ~ OPT(S).

Proof:
Let S be an instance of S Ll. Define M, A, F and B in the same way as for
the proof of Theorem 3.4. We derive the following inequalities:

CIJ = E Sijk

(i,j,k)EA

56 Chapter 3

< ~ Sijk (3.12)
(i,j,k)EB

< ~ dij + ~ djk (3.13)
(i,j,k)EA (i,j,k)EF

< ~ (dij+djk) (3.14)
(i,j,k)EF

((3.12) holds because A is optimal for (P2), (3.13) is by definition of Band
of Sijk, (3.14) follows from the optimality of M for (PI)).

By symmetry with (3.14), the following inequality is also valid:

CfJ ~ ~ (dij + dik). (3.15)
(i,j,k)EF

U sing the triangle inequalities, one easily checks:

2dij + dik + djk ~ 3Sijk for all i,j, k. (3.16)

Hence, (3.14), (3.15) and (3.16) together imply:

3 3
CIJ ~ 2" ~ Sijk = 2" OPT(S).

(i,j,k)EF

(3.17)

The example presented in the proof of Theorem 3.4 also achieves equality
in (3.17), and can be used to build arbitrary large instances. 0

Of course, one can define in a natural way two more ~-approximate
algorithms for problems Tb.. and Sb.., namely the heuristics HIK and HJK

obtained by permuting the roles of I, J and K in the description of HIJ.

We denote by CIK and CJK the values of the solutions delivered by HIK and
H JK, respectively.

Consider now the heuristic H, which consists in applying all three heuris­
tics HIJ,HIK and HJK to the given instance ofTb.. or Sb.., and in retaining
the best feasible solution thus produced. We denote by , the value of the
solution returned by H: , = min{CIJ,CIK,CJK}.

Clearly, H can again be implemented to run in time O(n3), and H is a
~-approximate algorithm for T b.. and S b... But even more is true:

Theorem 3.6 H is a ~-approximate algorithm for problem Tb... Moreover,
there exist arbitrary large instances T ofTb.. such that, = 1 OPT(T).

Section 3.3 57

Proof:
Let T be an instance of T 06., and F an optimal solution of T. As in the proof
of Theorem 3.4, we obtain inequalities (3.8), (3.9), as well as the symmetric
inequality:

CIK S 2 L: (dik + dik).
(i,i,k)eF

Summing up (3.8), (3.9) and (3.18) yields:

3')' S 2cIJ + CIK S 4 L: tiik = 4 OPT(T),
(i,i,k)eF

which proves that H is a i-approximate algorithm.

(3.18)

(3.19)

Equality in (3.19) is achieved by the instance T depicted in Figure 3.3.

h= k3
Figure 3.3

Here, 1= {il,i2,i3}, J = {h,h,ja}, K = {kt,k2 ,k3}. The lengths duv are
indicated next to the edges 'of the "pyramid", with duv = 0 if u = v. It is
easy to see that T is an instance of T o6.. Moreover, because T is symmetric
on I, J and K, we can assume that')' = CIJ = CIK = CJK.

An optimal solution of T is given by F = {(i1,i2, k3), (i2,ja, k1), (i3dt, k2)}

with OPT(T) = 6. But HIJ can return a solution with cost CIJ = 8, by pick­
ing M = {(it,il), (i2,ja), (i3,h)} in the first phase, and A = {(it, iI, k1), (i2,

ja, k2), (i3,h, k3)} in the second phase. 0

58 Chapter 3

Notice that we actually proved a little bit more than announced by
the statement of Theorem 3.6. Indeed, inequality (3.19) shows that the
minimum of any two of the bounds CIJ, C[K and CJK is already bounded
by ~ OPT(T). On the other hand, one can exhibit examples for which
ClJ = ClK = ~OPT(T), and CJK = OPT(T). Thus, heuristic H is in gen­
eral better than the strategy which consists in computing only two of the
bounds CIJ,CIK,CJK, and retaining the best one.

The same remarks apply to our next result:

Theorem 3.7 H is a ~-approximate algorithm for problem SI::!... Moreover,
there exist arbitrary large instances S of SI::!.. such that "'I = ~ OPT(S).

Proof:
Let S be an instance of SI::!.., and F be an optimal solution of S. Summing
up inequalities (3.14), (3.15) and

ClK ~ 1: (dik + djk),
(i,j,k)EF

we get:

3"'1 ~ 2cIJ + ClK ~ 2 1: (dij + dik + djk). (3.20)
(i,j,k)EF

Using the triangle inequalities to bound the right-hand side of (3.20) yields:

3"'1 ~ 4 1: Sijk = 4 OPT(S). (3.21)
(i,j,k)EF

A worst-case instance S is represented in Figure 3.4.

i3 = k2
Figure 3.4

All edges of this prism have length 1, and the distances are Euclidean.
The optimal solution {(it,h, k3), (i2, ja, k1), (ia, jl, k2)} has cost OPT(,

= 3. The heuristic HIJ may return M = {(ib iI),(i2,ja),(i3,h)} in pha
1, and A = {(i1,j}, k1), (i2,ja, k2), (i3,h, k3)} in phase 2, for a total c(
CIJ = 4. Hence, by symmetry, "'I = 4 is possible.

Section 3.4 59

3.4 Computational results

Of course, the quality of a heuristic cannot only be judged by its worst-case
performance. Very often, it is the case that this worst-case performance is
determined by pathological instances of the problem. With this in mind, we
conducted some numerical experiments to better assess the quality of the
various approximation algorithms discussed in Section 3.3.

For fixed n = III = IJI = IKI, we considered random problems of three
different types.
Type I The elements of I U J U K are generated at random, uniformly in
the square [0,1] x [0,1]. For each pair of points (u, v), du'IJ is the Euclidean
distance from u to v (we also used for du'IJ the Manhattan distance from u
to v, with results similar to those displayed below).

Instances of type I form a "natural" class of random instances for prob­
lems T d or S d. But, due to their high degree of uniformity, one may expect
these instances to be easy to solve for most heuristics when n grows large.
The next two types of instances are meant to be more "irregular" , and hence
more difficult to solve.
Type II The elements of I are generated uniformly in [0,1] x [0,1], those
of J in [1,1] x [0, !], those of K in [1,1] x [!,1]. The distances du'IJ are
Euclidean.
Type III We fix a parameter p E [0,1]. Then, for each pair (u, v), we let
d(u, v) = 1 with probability p, and d(u, v) = 2 with probability 1 - p. The
value of p was empirically adjusted so as to produce rather difficult problem
instances for our heuristics.

For each problem type, we report in Tables 3.1, 3.2 on the solution of
three instances with n = 33 and three instances with n = 66 (more instances
were actually tested, but the results displayed here are representative). The
problems of type III were generated with p = lr for n = 33 and p = io for
n = 66. Table 3.1 deals with problem T d and Table 3.2 with problem S d.

For the sake of comparison, we also give in Table 3.1 and 3.2 a lower­
bound lb on the optimal value of each instance, as well as the value of the
ratio ii. The bound 1b was computed using a Lagrangean relaxation scheme
and subgradient optimization, as proposed by Frieze and Yadegar· (1981).

60 Chapter 3

Type n CIJ CIK CJK ; Ib ;/lb

I 33 16.18 16.36 16.55 16.18 16.07 1.007
33 14.16 14.16 14.11 14.11 13.95 1.011
33 16.09 16.33 16.32 16.09 16.04 1.003
66 26.92 26.87 26.68 26.68 26.54 1.005
66 25.00 24.81 24.69 24.69 24.33 1.015
66 28.13 27.75 27.91 27.75 27.48 1.010

II 33 48.83 48.61 48.75 48.61 47.72 1.019
33 51.72 51.42 51.49 51.42 50.35 1.021
33 43.52 43.83 44.01 43.52 42.60 1.022
66 98.09 97.80 99.15 97.80 96.33 1.015
66 91.47 91.60 91.42 91.42 88.31 1.035
66 99.39 98.88 99:57 98.88 96.70 1.023

III 33 140 135 136 135 133 1.015
33 141 137 139 137 130 1.054
33 135 136 137 135 130 1.038
66 295 293 296 293 283 1.035
66 294 298 294 294 281 1.046
66 295 296 293 293 280 1.046

Table 3.1 Problem T A

Section 3.4 61

Type n CIJ CIK CJK 'Y lb 'Y lIb

I 33 8.57 8.69 8.64 8.57 8.45 1.014
33 7.61 7.54 7.53 7.53 7.39 1.019
33 8.43 8.55 8.58 8.43 8.37 1.007
66 14.23 14.31 14.09 14.09 13.90 1.014
66 13.38 13.13 13.13 13.13 12.84 1.023
66 14.70 14.53 14.46 14.46 14.20 1.018

II 33 26.54 26.65 27.32 26.54 25.96 1.022
33 28.62 28.73 28.98 28.62 27.81 1.029
33 23.78 23.79 24.21 23.78 23.11 1.029
66 53.86 54.05 55.90 53.86 53.12 1.014
66 49.29 49.47 50.43 49.29 47.88 1.029
66 54.70 54.84 56.19 54.70 53.52 1.022

III 33 75 71 71 71 69 1.029
33 75 72 73 72 67 1.075
33 71 72 72 71 67 1.060
66 163 161 165 161 151 1.066
66 163 167 164 163 152 1.072
66 163 165 161 161 147 1.095

Table 3.2 Problem S!!J.

The results exhibited in these tables indicate that, from a practical view­
point, the heuristics presented in Section 3.3 perform quite satisfactorily. In
particular, heuristic H solved all randomly generated instances within 10
% of optimality, and often came within 3 % of the optimal value (or, more
precisely, of the lower-bound lb).

Acknowledgements
The authors wish to thank Koos Vrieze for his insightful suggestions, which
led to the discovery of the worst-case examples presented in the proofs of
Theorems 3.6 and 3.7, and Hans-Jiirgen Bandelt for his comments on this
chapter.

Chapter 4

Scheduling jobs of equal
length: complexity, facets
and computational results

4.1 Introduction

The following problem is studied in this chapter. Given are n jobs, which
have to be processed on a single machine within the timespan [0, Tj. In our
formulation, we assume T to be an integer, and the timespan is discretized
into T time periods (or periods) oflength one, viz. [0, Ij, [1,2]' ... , [T -1, Tj.
Thus, period t refers to the time slot [t -1, tj, t = 1, ... , T. The machine can
handle at most one job at a time. The processing time, or length, of each
job equals p, p E IN. The processing cost of each job is an arbitrary function
of its start-time: we denote by Cjt the cost of starting job j in period t. The
problem is to schedule all jobs so as to minimize the sum of the processing
costs. We refer to this problem as problem SEL (Scheduling jobs of Equal
Length).

Mathematically, SEL can be formulated as follows:

n T-p+l

min L L CjtXjt
j=l t=l

T-p+1

subject to L Xjt = 1
t=l

n s+p-l

for j = 1, ... , n, (4.1)

L L Xjt::; 1 for s = 1, .. . ,T - 2p+ 2, (4.2)
j=l t=s

Xjt E {O, I} for j = 1, ... , n;

t = 1, ... , T - p + 1, (4.3)

where Xjt = 1 if job j starts in period t, and Xjt = ° otherwise.

Constraints (4.1) ensure that each job must start in some period, and
constraints (4.2) imply that no more than one job can be scheduled in p
consecutive periods. Obviously, the requirement that each job must be fin­
ished before T implies that the latest possible period for any job to start
(its starting period) is periodT - p + 1. Constraints (4.3) are the integrality
constraints.

In Section 4.2, this problem is shown to be strongly NP-hard, even when
all jobs have length p = 2. In Section 4.3, we show that the inequalities
in the LP-relaxation of (4.1)-(4.3) define facets and we focus on objective
functions for which these inequalities are in some sense sufficient. Section
4.4 presents more facet-defining and valid inequalities for the solution set of

66 Chapter 4

(4.1)-(4.3). Finally, we report in Section 4.5 on computational experiments
with a simple cutting-plane algorithm.

Notice that the input of SEL consists of the numbers n, T,p and Cjt, for
j = 1, .. . ,n,t = 1, .. . ,T - p+ 1. Thus, since we can assume that p ~ T,
the size of the input is O(nTlog(maxj,tcjt». It follows that an algorithm
polynomial in n, T,p is a polynomial algorithm for SEL. This observation
will allow us to conclude that two separation algorithms presented in Section
4.4 are polynomial-time algorithms.

Notice further that SEL is a special case of a scheduling problem (say,
problem S) considered by Sousa and Wolsey (1992). In problem S, the
jobs may have general processing times. Sousa and Wolsey propose several
classes of facets and valid inequalities for S. It is an easy observation that,
if {1, ' ... , n} is any subset of the jobs occurring in S, and all the jobs in
{1, ... , n} have the same length p, then any valid inequality for (4.1)-(4.3)
is also valid for S. This suggests that-the polyhedral description presented
in sections 4.3 and 4.4 may prove useful, not only when all jobs strictly have
equal length, but also in situations where the number of distinct lengths is
small, or where most of the jobs have the same length. We now proceed
to describe an interesting application in which the latter assumptions are
fulfilled, and which originally motivated our study.

The electronics industry relies on numerically controlled machines for the
automated assembly of printed circuit boards (PCBs). Prior to the start of
operations, a number n of feeders, containing the electronic components to
be mounted on the PCBs, are positioned alongside the machine, in some
available slots 1,2, ... , T. A slot can accomodate at most one feeder. Each
feeder j requires a certain number of slots, say Pj, depending on the feeder
type; usually, pj only takes a small number of values, say Pj E {1, 2, 3}. In
order to minimize the production makespan, it is desirable to position the
feeders "close" to the locations where the corresponding components must
be inserted. More precisely, for each combination of feeder j and slot t, a
coefficient Cjt can be computed which captures the cost of assigning feeder
j to slots t, t + 1, ... , t + Pj - 1. It should now be clear that finding
a minimum-cost assignment of feeders to slots is equivalent to solving a
scheduling problem with "small number of distinct processing times" (see
e.g. Ball and Magazine (1988) for a description of this model with Pj = 1
for all j, and Ahmadi et al. (1995), Chapter 2 of this monograph, and Van
Laarhoven and Zijm (1993) for a more general discussion).

Let us finally mention that SEL may be regarded asa discrete analogue of
scheduling problems with unit-length tasks and arbitrary rational start-times

Section 4.2 67

(see e.g. Gareyet al. (1981) where millimizing the makespan is the objective
considered). SEL is also superficially related to an assignment problem with
side constraints investigated by Aboudi and Nemhauser (1990, 1991).

4.2 Complexity of SEL

It is obvious that, when each job has length 1 (the case p = 1), SEL reduces
to an assignment problem, and hence is solvable in polynomial time. The
following theorem shows that SEL is already strongly NP-hard for p = 2:

Theorem 4.1 SEL is NP-hard, even for p = 2 and Cjt E {O, 1} for all j, t.

Proof:
An instance of SEL, with p = 2 and processing costs equal to ° or 1, can be
described by a bipartite graph G = (VI U V2,B). Each job is represented by
a vertex in Vi, each period is represented by a vertex in V2 , and there is an
edge (j, t) E E, with j E VI and t E V2 , if and only if starting job j at period
t has processing cost Cjt = 9. The instance of SEL admits a schedule with
zero cost if and only if there exists a set of edges A ~ E such that

i) each vertex in VI is incident to precisely one edge in A,

ii) each vertex in V2 is incident to at most one edge in A, and

iii) if vertex t E V2 is incident to an edge in A, then vertex t + 1 is not
incident to any edge in A, for all t = 1, ... , 1V21 - 1.

We use a reduction from the NP-hard 3-dimensional matching problem
(see Garey and Johnson(1979)). An instance I of 3-dimensional matching is
specified by three mutually disjoint sets Kb K2 and K3 with IKil = n, for
i = 1,2,3, and a set Q ~ KI X K2 X K 3, with IQI = m. The instance is
feasible if there exists a set Q' ~ Q such that every element of KI U K2 U K3
occurs in exactly one element of Q'.
With I, we associate an instance of SEL as follows. Let

VI = KI U K2 U K3 U {al, .. . ,am - n } U {bb ... ,bm - n },

V2 = {dl , ••• ,d6m}.

In order to define the edge-set E, denote by Q r = {k~, k:, k~} the r-th triple
in Q, where

k~ E KI, k: E K2 and k~ E K3 (r = 1, . .. ,m).

68 Chapter 4

Now, let E consist of the following edges:

(k~, d6(r-l)+1), (k;, d6(r-l)+3) and (k~, d6(r-l)+5)

for r = 1, ... , m and

for 8 = 1, ... ,m- n, and r = 1, ... ,m.

A typical piece of the graph is shown in Figure 4.1.

k~ • • d6(r-l)+1

k2 r d6(r-l)+2

k3 r

d6(r-l)+3
al

Figure 4.1

When the instance· I of 3-dimensional matching has a feasible solution,
it is straightforward to find a set of edges A ~ E which defines a zero-cost
schedule. Conversely, assume that SEL has a feasible solution specified by
an edge set A. Define Dr = {d6(r-l)+l, ... , d6r } for r = 1, ... , m. Notice
that, for each r = 1, ... , m, at most three vertices of Dr are incident to some
edge of A. Moreover, when there are exactly three such vertices, then these
vertices are matched to Qr by A. Let now

Section 4.3

R3 = {r : exactly three vertices of Dr are incident to some edge of A },

R2 = {r : at most two vertices of Dr are incident to some edge of A }.

Since IAI = IVt I = 2m + n, we get:

2m + n $ 31R31 + 21R21

= 31R31 + 2(m - IR31)

= 2m+ IR31.

69

From this, it directly follows that Q' = {Qr : r E R3 } contains exactly n
triples, and thus Q' defines a feasible solution of the 3-dimensional matching
problem. 0

In fact, it can be proven that SEL remains NP-hard when each job can
be processed at zero cost during three periods only (Spieksma and Crama
(1992». -

Notice that the proof of Theorem 4.1 is easily adapted to show that a
related problem, in which nl jobs have length 1, n2 jobs have length 2, and
T = nl + 2 . n2 (the minimal value of T allowing a feasible solution), is
NP-hard too. This is to be contrasted with the following statement:

Theorem 4.2 If T = n . p + c, where c E IN denotes a given constant not
part of the input, then BEL is polynomially solvable.

Proof:

Simply notice that, in this case, it is sufficient to solve (n; c) = O(nC)

assignment problems, where each assignment problem corresponds to a set of
starting periods allowing a feasible solution to SEL. Indeed, the feasible sets
of starting periods are in 1-1 correspondence with 0-1 sequences of length
n + c containing exactly n l's and cO's (with the O's denoting idle periods
between successive jobs). 0

4.3 The LP-relaxation of SEL

Let us first recall some fundamental definitions from polyhedral theory (for
a thorough introduction, the reader is referred to Nemhauser and Wolsey
(1988)). Consider a polyhedron P = {x E JRk : Ax $ b}. The equality set of
(A, b) is the set of rows of (A, b), say (A=, b=), such that: A=x = b= for all
x in P. The dimension of P is given by: dim(P) = k - rank(A=, b=). The

70 Chapter 4

inequality ax ::; ao is valid for P if it is satisfied by all points in P. For a
valid inequality ax ::; ao, the set F = {x E P : ax = ao} is called a facet of
P if dim(F) = dim(P) - 1. Equivalently, when 0 i= F i= P, F is a facet if
and only if the following condition holds: if all points in F satisfy 7rX = 7ro,
for some (7r, 7ro) E JRk+ 1, then (7r, 7ro) is a linear combination of (A = , b=) and
(a, ao) (see Nemhauser and Wolsey (1988), p. 91).

Consider now the formulation in Section 4.1, and let P denote the convex
hull of the feasible solutions to constraints (4.1), (4.2) and (4.3). Further­
more, assume from now on that T 2: p. (n + 1). (Notice that dim(P) ::;
n . (T - p + 1) - n = n . (T - p). If T < p. (n + 1), then it is easy to see

n p

that dim(P) < n· (T - P)i for instance LL)jt = 1 is implied by (4.1) and
j=lt=l

(4.2)). To avoid trivialities, assume also n > 2, p 2: 2.
Sousa and Wolsey (1992) established the dimension of P. For the sake

of completeness, we also include a proof of this result:

Theorem 4.3 dim(P) = n· (T - p).

Proof:
n T-p+l

We just noticed that dim(P) ::; n· (T - p). Suppose L L 7rjtXjt = 7ro for
j=l t=l

all x E Pi we want to show that this equality is implied by constraints (4.1).
To see this, fix j and t, t ::; T - p, and consider a solution with job

j starting at period t, while the other jobs start arbitrarily at periods in
[1, t - p] U [t + p + 1, T - p + 1]. Note that this is always possiblei e.g. let
t = k . p + q, with 1 ::; q ::; Pi then, a feasible schedule can be found using
only starting periods in

St = {j.p+q:j = O, ..• k}U{j·p+q+ l:j = k+ 1, ... ,m},

where m is the largest index such that m . p + q + 1 ::; T - p + 1. Indeed,
since T 2: p . (n + 1), St contains at least n time periods.

Consider now a second schedule, obtained by starting job j at period
t + 1, while all other jobs remain untouched. Comparing the two schedules,
it follows easily that 7rjt = 7rj,t+! for all j = 1, ... , n, t = 1, . .'., T - p. (This
construction will be used in subsequent proofs.) Thus, with 7r jt = 7r j for all

n T-p+l n T-p+l

j=1, ... ,n,t=1, ... ,T-p+1,wegetL L 7rjt Xjt=L7rj L Xjt=
j=l t=l j=l t=l

7ro, which is a linear combination of the equalities (4.1). 0

Section 4.3 71

With the dimension of P established, we now can proceed to show that some
inequalities define facets of P. First, we prove that the inequalities in the
LP-relaxation of (4.1)-(4.3) are facet-defining.

Theorem 4.4 The inequalities Xjt ~ 0 define facets of P, for all j =
1, ... , n, t = 1, ... , T - p + 1.

Proof:
Let F = {x E P: Xis = O} for any i, 8 with 1 ~ i ~ n, 1 ~ 8 ~ T - p + 1 and

n T-p+l

suppose L: L: 'KjtXjt = 'Ko for all x E F.
j=l t=l

To prove 'Kj = 'Kjt for all j = 1, ... ,n, j ::j: i, t = 1, ... ,T - p+ 1, we
refer to the construction used in the proof of Theorem 4.3 (it is obvious
that it is always possible to ensure that job i is not placed at 8, for any
8). Moreover, we can use this construction for job i and starting period t
for all t ~ 8 - 2 and t ~ 8 + 1, proving that 'Kil = 'Ki2 = ... = 'Ki,s-l and
'Ki,sH = 'Ki,s+2 = ... = 'Ki,T-pH' Thus, for 8 = lor 8 = T - p+ 1, it follows
that 'Ki = 'Kit for all t ::j: 8.

If 8 ::j: 1 and 8 ::j: T - p + 1, consider a solution with job i at period 1
and the other jobs at periods 1 + p, 1 + 2p, ... ,1 + (n - 1) . p, and a solution
with job i at T - p + 1, and all other jobs at the same periods as before
(again, note that this is always possible, since we assumed T ~ p. (n + 1)).
Comparing these solutions, it follows that 'Kil = 'Ki,T-pH and thus 'Ki = 'Kit

for all t ::j: 8. So:

n T-p+l n T-p+l

L: L: 'KjtXjt = L: 'Kj L: Xjt + PXis,
j=l t=l j=l t=l

n T-p+l

which shows that the equality L: L: 'KjtXjt = 'Ko is a linear combination
j=l t=l

of (4.1) and of Xis = O. o

Theorem 4.5 The inequalitie8 (4.2) define facets of P.

Proof:
n s+p-l

Let F = {x E P: L: L: Xjt = I}, for any 1 ~ 8 ~ T-2p+2, and suppose
j=l t=s

72

n T-p+l

L L 7rjt X jt = 7ro for all x E F.
j=l t=l

Chapter 4

For any j and any t, consider a schedule using only starting periods in St
(as in Theorem 4.3) and with Xjt = 1. There is always such a schedule
corresponding to a point in F, unless t = s - 1. Also, the schedule obtained
by delaying the starting period of job j until t + 1 is in F, unless t = s + P -1.
From this, one easily concludes that, for all j = 1, ... , n,

7rjl = 7rj2 = ... = 7rj,s-l = O!j,

7rjs = 7rj,s+l = ... = 7rj,s+p-l = f3j,

7rj,s+p = 7rj,s+p+l = ... = 7rj,T-p+l = Ij' (4.4)

If 2 ::; s ::; T - p, then one can also show as in Theorem 4.4 that 7rjl =
7rj,T-p+! for all j = 1, ... , n, or, more generally:

Ij = O!j for all j = 1, .. . ,n. (4.5)

Furthermore, simple interchange arguments yield:

f3j + O!i = O!j + f3i for all i,j E {1, 2, ... , n}, (4.6)

or equivalently g = f3j - O!j for all j = 1, ... , n.

So, (4.4), (4.5) and (4.6) together imply:

which proves the theorem. 0

Theorems 4.4 and 4.5 state that the inequalities in the LP-relaxation of
(4.1)-(4.3) define facets of (4.1)-(4.3). In view of the NP-hardness of SEL,
we obviously cannot hope that these inequalities alone suffice to describe
P (as a matter of fact, they don't). However, it is conceivable that, by

Section 4.3 73

restricting ourselves to a certain class of objective functions, the inequalities
in the LP- relaxation are in some sense sufficient. In the following we will
explore this issue. Define

Q = {x E 1R+ : x satisfies (4.1) and (4.2)}.

Notice that Q is the polytope defined by the inequalities in the LP-relaxation.
Let us now address the following question: which restrictions on the objective
function guarantee either that i) a.ll optimal vertices of Q are integral ?, or -
less demanding -, that ii) there exists an optimal vertex of Q that is integral
?

If, for some c, condition i) holds, we will say that Q is integral with
respect to c. If, for some c, condition ii)holds, we will say that Q is weakly
integral with respect to c.

Notice that if Q is integral with respect to c, then any simplex-based
LP-solver, when optimizing cover Q, will find an optimal integral solution
to SEL. If Q is weakly integral with respect to c, the value found by the
LP-solver will be equal to the cost of an optimal solution to SEL.

Consider 'the following restriction on the objective function c.

Restriction 1: For a.ll j = 1, ... , n, there exists a tj with 1 :$ tj :$ T - p + 1
such that

Cjt < Cj,tH for t = 1, ... , tj - 1, and
Cjt > Cj,tH for t = tj, ••• , T - p.

Theorem 4.6 If C satisfies Restriction 1, then Q is integral with respect to
c.

Proof:
Let us ca.ll each element of Q a feasible LP-solution, and let us ca.ll each
x E Q such that cx :$ cy for a.ll y E Q, an optimal LP-solution. It will
sometimes be useful to think of x E Qas of a matrix with elements x jt.

Consider an optimal LP-solution x*. Let us refer to Ej=1 xjt as the
weight of column t, t = 1, ... , T - p + 1. We claim that any optimal LP­
solution satisfies the following property: there exists r E {O, ... , n} such that
-columns 1,1 + p, 1 + 2p, ... , 1 + (r - l)p have weight 1;
-column 1 + rp has weight 1 - € E [0,1];
-column T - (n - r)p + 1 has weight €;
-columns T- (n-r-l)p+ I,T- (n-r-2)p+ 1, .. . ,T-p+ 1 have weight
1.

74 Chapter 4

Intuitively, one can explain this as follows. Consider a feasible LP­
solution y. IT some fraction Yjt > 0 with,t < tj (t > tj) can be "shifted" to a
smaller (greater) period, a solution with lower cost arises due to Restriction
1. Thus, such a shift cannot be possible in an optimal LP-solution, and this
results in the property described.

Let us now establish the validity of the property in a more formal way.
First, observe that there cannot be two jobs ibh and two time periods s, t
such that th ~ s < t < til, xjl,t > 0 and xj2,s > O. Otherwise, indeed, we
could construct a feasible LP-solution Y with lower cost than x* by setting
Yjt = xjt for all i, t except:
Yjl,t := xjl,t - /3
Yj2,S := xj2,s - /3
Yil,s := xjltS + /3
Yh,t := xj2,t + /3, where /3 = min(xjl,t' xj2,S)'
Next, consider the first index r E {O,; .. , n} such that column 1 + rp has
weight 1- f with f > O. Suppose that there exists a time period t such that,
for some job ill 1 + rp < t < til and xjl,t > O. Choose t as small as possible
with these properties. Then again, we could define a solution Y' with smaller
cost than x* by setting Yjt = xjt for all i, t, except:
Yil,t := xjl,t-min(f, xjl,t)
Yil,l+rp:= xit,1+rp+min(f,xjl,t)·
The solution Y clearly satisfies constraints (4.1). It is also straightforward
that Y satisfies (4.2) if t ~ (r + 1)p. Moreover, if t > (r + 1)p, then the choice
of t implies that xj2,s = Yh,8 = 0 for all 1 + rp < s, ~ (r + 1)p and for all
h E {1, ... , n} (else we would have xjltt > 0, xj2,s > 0 and th ~ s < t < tjl'
which contradicts our first observation); hence (4.2) is satisfied in this case,
too.

From the previous discussion we conclude that xjt > 0 implies t ~ tj for
all t > 1 + rp and for all jobs i. In view of Restriction 1, it is now easy to
argue that the weight of columns T - p+ 1, T - 2p+ 1, ... , T - (n - r -1)p+ 1
must be exactly 1, and that the weight of column T - (n - r)p + 1 is f.

Now we will demonstrate that if x* is fractional, it can be written as a
convex combination of integral solutions, and therefore cannot be an extreme
vertex of Q. This implies· that Q is integral with respect to c.

Let us construct from the solution x* a matrix M with n rows and n
columns as follows. First, "merge" columns 1 + rp and T - (n - r)p + 1
(with weights f and 1 - f respectively) into one column by summing the
corresponding entries. Let M now consist of all columns in the solution x*
which have weight 1 (including the "merged" column). Obviously, M has

Section 4.3 75

n columns and n rows each with weight 1. Thus, we can apply Birkhoff's
result (Birkhoff (1946» on doubly stochastic matrices to show that M is a
convex combination of some {O,1} matrices, which have the property that
each column and each row contain precisely one 1. The solution to SEL
corresponding to such a {O, 1} matrix can be found straightforwardly: if an
entry (i,j) is 1, then job i is scheduled at the period corresponding to the
j-th column. Notice that if in x* a job has positive fractions in both merged
columns, this can be handled by "splitting" the corresponding {O, 1} solution
with multipliers according to those fractions. 0

The reader will have no difficulty in verifying that, if we relax in Restriction
1 the '<' and '>' sign to '~' and '~', (let us call this relaxed Restriction 1)
we can deduce the following corollary.

Corollary: If c satisfies relaxed Restrictio?l 1, then Q is weakly integral
with respect to c.

Notice also that, under relaxed Restriction 1, Q is not integral with respect
to c, since even for a constant objective function (which certainly satisfies
relaxed Restriction 1) all vertices of Q, including the non-integral ones, are
optimal.

The fact that we consider here a problem where all jobs have equal length
is crucial for Theorem 4.6, as witnessed by the following example.

Example:
Let n = 2, PI = 1, P2 = 2 (where Ph j = 1,2 denotes the processing time of

job j), and let Cjt = (~ ! :). In order to accommodate jobs of different

length in our formulation, we reformulate constraints (4.2) as follows:
n t

L L xjs~1fort=1,2,3.
j=1 s=max(l,t-pj+1)

(4.7)

Now, a feasible solution to the model defined by constraints (4.1), (4.7) and
the nonnegativity constraints is: Xu = XI2 = X2I = X23 = !, XI3 = X22 = 0.
This solution has cost 3!, whereas any optimal integral solution has cost 4.
o

Obviously, Restriction 1 subsumes the case where the cost-coefficient of each
job is simply its starting period. Adding job-dependent release dates to this
case translates into the following restriction on the objective function.

76 Chapter 4

Restriction 2: For all j, there exist Tj, with 1 ~ Tj ~ T - np+ 1 such that,
for all t:

Cjt = t - Tj if t ~ Tj

Cjt = M if t < Tj,

where M is a sufficiently large number.

Theorem 4.7 If c satisfies Restriction 2, then Q is integral with respect to
c.

Proof:
Observe that in an optimal LP-solution x*, xJt = 0 if Cjt = M for all j, t.
This is due to the fact that we assumed that rj ~ T - np+ 1 for all j, which
allows enough room to accommodate all weight on cost-coefficients whose
value is not M.

Assume, without loss of generality, T1 ~ T2 ~ ••• ~ Tn. Further, define
Si as follows, for i = 1, ... , n:

Sl = Til

Si =max(si-1 + p, ri).

We claim that in an optimal LP-solution x*, columns Si have weight 1
for i = 1, ... , n. The proof of this claim is by contradiction. Consider the
minimal i E {1, .. . ,n} for which column Si has weight < 1. Let us refer to
this column as column Si1. Obviously, there must exist a job, say job j1,

which is fractionally scheduled on a period t1 ~ Si1 and has positive weight
on a period t2 > Si1 , that is xJ~ t > 0 and xJ~ t > o. We will now construct

1, 1 b 2

a feasible LP-solution Y with lower cost than x*, thereby contradicting the
optimality of x*.

The solution Y can be constructed in the following way. Let us "transfer"
a quantity € =min{j,t:xjt>O}xJt from XJ1 h to XJ1,8i1 . To be precise, set Yjt =

xJt' for all j, t, except:
Yj1 ,t2 =XJ1 h - €,

Yj1 ,8i1 =XJ1 ,8;1 + €.

This solution Y has gained (t2 - Si1)€ in cost, however, it may not satisfy

constraints (4.2): constraint E7=1 E;~8;;-1 Yjt ~ 1 may be violated, since
we added € to the left-hand side. This can be repaired in the following way.
Pick the first column t, with Si1 < t ~ Si1 + P - 1, such that Yjt > 0 for some
job j, and set:

Section 4.3

Yjt := Yjt - €, and
Yj.t2 := Yj,t2 + €.

77

Notice first that this yields a feasible LP-solution, and secondly, this
deteriorates the cost of the previous solution Y by at most (t2 - Sil - 1)€.
Thus, the solution Y constructed here achieves a net gain of at least €. This
contradicts the optimality of x* and therefore columns Si have weight 1 for
i = 1, .. . ,n.

It follows that the optimal LP-solution contains n columns and n rows
each with weight 1. Thus, we can use Birkhoff's result (1946) as we did in
Theorem 4.6, to show that, if x* is fractional, it can be written as convex
combination of {0,1} solutions. 0

Finally, consider the following restriction, which models a common re­
lease date and job-dependent due dates: -

Restriction 3: For all j,t, Cjt E {0,1}; also, there exists r E {l, ... ,T­
p + 1} and, for all j, there exist dj E {r, . .. , T - p + 1} such that

Cjt = ° for t = r, ... , dj, and
Cjt = 1 for t = 1, ... , r - 1 and for t = dj + 1, ... T - p + 1.

Theorem 4.8 If C satisfies Restriction 3, then Q is weakly integral with
respect to c.

Proof:
Consider some optimal LP-solution x*, and assume it is fractional. We prove
the theorem by manipulating this solution so that an integral solution arises
whose cost does not exceed the cost of the optimal LP-solution. First, we
apply the following procedure. If the weight of column r is smaller than 1,
find the earliest positive fraction after r (breaking ties arbitrarily) and shift
it (or part of it) to period r. More formally, let the weight of column r equal
1- €, for some € > 0, and let t denote the smallest t > r such that the weight
of column t is positive. For some job j with xjt > 0, we now set:
xjt := xjt-min{€,xjt), and
xjr := xjr +min{ €, xjt)·
Repeat this step until column r has weight 1. Next, repeat this procedure for
each of the columns r + ap, a = 1, ... ,n-1. If, for some a E {1, ... , n -1},
r + ap > T - p + 1, the procedure is continued for columns 1,1 + p, ... , until

78 Chapter 4

we obtain a solution in which n columns have weight 1. Due to the fact that
"T is large enough" (we assumed T ~ p. (n + 1)) the solution constructed by
repetition of the described procedure yields a feasible LP -solution. Also, it is
easy to see that the cost ofthe solution constructed has not increased. Now,
assume, without loss of generality that d1 ~ d2 ~ ••• ~ dn • Suppose XIT =1= 1.
Then there exists a job, say job j, such that XiT > 0, j =1= 1, and there exists
a column, say column t (=1= r), such that Xit > O. Let "'{ =min(xit, XiT)' Set
xiT := xiT + ",{,
X* '- x* "'{ jT'- jT - ,

Xit := Xit - ",{,

Xit := Xit + "'{.
Notice that this solution is still a feasible LP-solution whose value is not
worse than the original solution (since if CIt = 0 then Cjt = 0 by the ordering
we assumed). By repeating this step until xiT = 1, and next by deleting
columns r, r + 1, ... , r + p - 1 and jobsi with di ~ r + p - 1, and repeating
this procedure again, we finally find a {O, 1} solution with the same cost as
the cost of the LP-relaxation. 0

Notice that under Restriction 3, even with dj = d for all j, Q is not integral
with respect to c. This can be derived from the fact that, with r = 1 and
dj = T - p + 1 for all j, a constant objective function appears for which, as
mentioned earlier, all vertices of Q are optimal.

In case we relax Restriction 3 to allow for job-dependent release times rj,
we lose the weak integrality of Q as witnessed by the following example.

Example: (1 0 1 1) .
Let n = 2, p = 2 and let Cjt = 0 0 0 1 . The solutIOn X12 = X14 =
X21 = X23 = t, and all other Xjt = 0, is a feasible LP-solution with cost t.
However, the optimal integral solution has cost 1. 0

Section 4.4 79

4.4 More facet-defining and valid inequalities for
SEL

In this section we will exhibit more facet-defining and valid inequalities for
SEL. To start with, let us consider the following inequalities:

s+p+'-l n s+p-l
EXit + E E Xjt ~ 1
t=s j=l t=s+'

#i

for 1 ~ i ~ n, 1 ~ 1 ~ p - 1 and 1 ~ s ~ T - 2p -I + 2. (4.8)

These inequalities are introduced in Sousa and Wolsey (1992). Notice that
the inequalities (4.2) are the special case of (4.8) for 1 = O. However,
for reasons of convenience, we maintain the distinction between these two
classes. It is not difficult to see that the inequalities (4.8) are valid, but they
are also facet-defining, as witnessed by the next theorem (due to Sousa and
Wolsey (1992».

Theorem 4.9 The inequalities (4.8) define facets of P.

The validity of this theorem will also follow from the validity of the more
general Theorem 4.11.

Observe that all {in)equalities (4.1), (4.2) and (4.8) are ofthe set-packing
type, i.e. they only involve coefficients 0 or 1, and their right-hand side equals
1. In fact, the following holds:

Theorem 4.10 All facets of P defined by set-packing inequalities are given
by (4.2) and (4.8).

Proof:
Consider an arbitrary valid set-packing inequality I and define

t* = m~ f1;r{t2 - tl : Xjh and Xj,tl occur with coefficient 1 in I}.
3 2_ 1

Let i be the job which realizes t*. We will make use of the following ob­
servation: no two variables Xjt and Xks, with k =F j, and Is - tl ~ p, can
simultaneously occur with coefficient 1 in I.

Let us first consider the case t* ~ 2p - 1. Then, it is easy to verify that
no variable Xu, i =F j, for any t, can occur in the inequalitYi thus I is implied
by equalities (4.1), and cannot represent a facet.

Next, suppose p ~ t* ~ 2p - 2, i.e. t* = P + 1 - 1 for some 1 ~ I ~ p - 1.
More specifically, suppose that Xis and Xi,s+p+'-l have coefficient 1 in I.

80 Chapter 4

From our previous observation, it easily follows that, for any j f= i, Xjt

cannot occur in I if either t ~ s + 1 - 1 or t ;?:: s + p. Hence, I is implied by
(4.8).

Finally, when t* ~ P - 1, let s be the smallest index such that, for some
k, Xks occurs in I with coefficient 1. It follows again from our observation
that, for all j and for all t ;?:: s + p, Xjt does not occur in I. Hence, I is
implied by (4.2). 0

(van den Akker, van Hoesel and Savelsbergh have independently established
that, for the more general scheduling problem S mentioned in Section 4.1, all
facet-defining set-packing inequalities are given by Sousa and Wolsey (1992)
(see van den Akker, van Hoesel and Savelsbergh (1993»).

In the following we investigate generalizations of (4.8). To start with,
(4.8) can be generalized to the following inequalities:

s+k·p+l-l k-ls+p-l

L L Xjt + LL L Xj,t+r.p ~ k,
jeJ t=s j¢J r=O t=s+'

for J C {l, ... ,n} with IJI = k > 0,

1 ~ 1 ~ p - 1 and 1 ~ s ~ T - (k + 1) . p - 1 + 2. (4.9)

Notice that for J = {i}, (4.9) is equivalent to (4.8). The inequalities (4.9)
are valid and even facet-defining as witnessed by the following theorem:

Theorem 4.11 The inequalities (4.9) define facets of P.

Proof:
To facilitate the proof, we define subsets of periods which occur in (4.9).
Let:

A = [s, s + k . p + 1- 1] and

B {t + r· p: r = 0, ... , k - 1jt = s + I, ... , s + p - 1}

= [s + I, s + p - 1] U [s + p + I, s + 2p - 1] U ...
... U [s + (k - 1) . p + I, s + k . p - 1].

(see Figure 4.2 for an illustration of the case p = 5, k = 3, 1 = 2). With
these notations, (4.9) can be rewritten as

LLXjt+ LLXjt ~ k. (4.10)
jeJteA j¢JteB

Section 4.4 81

8 8 + 1 8 + p - 1 8 + p + 18 + 2p - 1 8 + 2p + Is + 3p - 1 8 + kp + 1 - 1

B

Figure 4.2

First we show that these inequalities are- valid. Suppose that k + 1 jobs
start in the interval [8, 8 + k· p + 1- 1]. The only way to achieve this is to
start exactly one job in each ofthe intervals [8, 8+1-1], [8+P, 8+p+I-1],
... ,[8 + k· p, 8 + k· p + 1- 1] (this is easily checked by induction on k), i.e.
to start the jobs in A\B. However, the periods in A\B only occur in (4.10)
for the k jobs in J. This implies that (4.10) is valid. Let us show now that
(4.10) is facet-defining.

n T-p+1

Let F = {x E P: L LXjt+ L LXjt = k} and suppose L L 'KjtXjt =
jeJ teA jrt.J teB j=1 t=1

'Ko for all x E F.

Now, let j E J and t E A\{8 + k· p + 1- 1}. Consider a solution with job j
started at period t, and other jobs started at t - p, t - 2p, ... and t + p + 1,
t + 2 P + 1, ... , in such a way that jobs in J are started in A (thus ensuring
that x E F). Shifting job j one period towards t + 1 proves

'Kjt = 'Kf for all j E J, for all tEA. (4.11)

Let now i ¢ J and t E [8+r'p+I,8+(r+l)·p-2], where r E {O, .. . ,k-1}
(this is assuming 1 $ p - 2; else this step of the proof is not 'required).
Consider the following solution: start job i at time t, start k - 1 jobs from
J in A, at periods t - p, t - 2p, ... , and t + p + 1, t + 2p + 1, ... , and start
all other jobs outside A. Shifting job i one period proves

'Kit = 'Ki for all i ¢ J, t E [8 + r· p + I, 8 + (r + 1). p - 1],

rE{O, ... ,k-l}. (4.12)

82 Chapter 4

Also, interchanging job i ¢ J and job j E J proves (for any I E {I, ... ,
p-1}):

(4.13)

(4.12) and (4.13) together imply:

1rit = 1rf for all i ¢ J, for all t E B. (4.14)

Now, a similar reasoning as in Theorem 4.5 ensures that

1rit = 1rfut for all i ¢ J, for all t ¢ A. (4.15)

Furthermore, consider a solution with the jobs from J at s, s + p, ... ,
s + (k - 1). P and job i, i ¢ J at s +k· p. Simple interchange arguments
imply, together with (4.10) and (4.15),

1rit = 1rfut for all i ¢ J, t ¢ B. (4.16)

Also, similar arguments imply

1rjt = 1rjut for all j E J, t ¢ A. (4.17)

Moreover, it is easy to see that

in + out _ out + in l' all·· E {I 2 } 1rj 1ri - 1rj 1ri lor t,J " ... , n , (4.18)

or equivalently (3 = 1rf - 1rrt for all j = 1, ... , n.

Now (4.10), (4.14), (4.16), (4.17) and (4.18) imply:

n T-p+l

2: 2: 1rjtXjt
j=1 t=1

= 2: 2: 1rfXjt + 2: 2: 1rjutXjt + 2: 2: 1rfXjt + 2: 2: 1rrtXjt
jeJ teA jeJ t.f/.A jf/.J teB jf/.J'tf/.B

n T-p+1

= 2: 1rjut 2: Xjt + (3. (2: 2: Xjt + 2: 2: Xjt),
j=1 t=1 jeJ teA jf/.J teB

proving the theorem. o

Section 4.4 83

Even though there is an exponential number of inequalities of type (4.9),
the separation problem for this class of inequalities is polynomially solvable.
Indeed, notice that (4.9) can be rewritten as:

n k-1 s+p-1 k s+I-1

'E 'E 'E Xj,Hr·p + 'E 'E 'E Xj,t+r.p::; k. (4.19)
j=1r=O t=s+1 jEJr=O t=s

We want to check whether a given x* violates one of these inequalities. Fix
s, 1 and k (there are only O(pnT) choices for these three values). Then, the
first term of (4.19) is a constant. Pick the k values of j which maximize the
second term and put them in a set J*. If X* violates (4.19) for any J, then
it does so for J*.

Another way of generalizing the inequalities (4.8) is the following. Choose a
non-empty set J C {1, ... , n} and a non-empty set S C {1, ... , T - 2p + 2}.
For each s E {1, ... , T - p + 1}, define qs = 1 if s E Sand qs = 0 otherwise.
Then, by adding the constraints (4.1) for j E J and the constraints (4.2) for
s E S, each with coefficient !, we obtain the following valid inequality:

II 1 t j (2: + 2:' 'E qs) . X jt
s=t-p+1

T-p+1

'E'E
jEJ t=1

II t j 1 2: . s=t;+1 qs . Xjt ::; L2:(IJI + ISI)J
T-p+1

+ 'E 'E (4.20)
j~J t=1

We refer to these inequalities as (J, S) inequalities. The inequalities (4.8) are
the special case of (4.20) obtained for J = {i} and S = {s, s+I}. Of course, a
more sophisticated choice for S could lead to other valid inequalities. Indeed,
it is possible to generalize inequalities (4.8) by choosing S as k couples of
periods in the following way: for some k 2': 2 and 1 E {1, ... ,p - 1},

S={s, s+l, s+p, s+p+l, ... ,s+(k-1)·p,s+(k-1).p+l}.

However, the resulting (J, S) inequalities do not define facets of P. In
fact, (when k 2': 2 of course), they can be strengthened by lifting certain
coefficients to 2. The following inequalities result:

s+k·p-1 s+k·p+I-1 k-1 s+/-1

'E 'E Xjt + 'E Xit + 'E 'E Xi,Hr.p::; k,
j#i t=s+1 t=s r=1 t=s

for i, k, 1, s with 1 ::; i ::; n, 1 ::; k ::; n,l ::; 1 ::; p - 1 and

1::; s ::; T - (k + 1) . p -1 + 2 (4.21)

84 Chapter 4

(observe that, when k ~ 2, then some variables occur with coefficient 2 in
(4.21)). The following holds:

Theorem 4.12 The inequalities (4.21) define facets of P.

Proof:
We first introduce some notation. With i, k, I, s as in (4.21), let

A [s,s+k·p+I-1],

C [s+l,s+k·p-1],

D = {t + r . p : r = 1, ... , k - 1; t = s, .. . , s + 1 - 1}

[s + p, s + p + 1- 1] U [s + 2p, s + 2p + 1- 1] u ...
. . . U [s + (k - 1) . p, s + (k -"1) . p + 1 - 1].

We can rewrite (4.21) as

L L x jt + L Xit + 2 . L Xit ~ k
#i tEG tEA \D tED

(4.22)

Let us first show that (4.22) is valid for P. Consider any feasible schedule.
It is easy to see that the only way to start k jobs in C is to start them in
C\D = [8 + 1,8 + P - 1] U ... U [8 + (k - 1) . p + 1,8 + k . p - 1] (one job in
each subinterval). But, if this is the case, then there is no room left to start
job i in A, and hence (4.22) is satisfied. So, the only way to violate (4.22)
is to start k - 1 jobs in C, and job i in D. Let us suppose job i starts at
8 + r· p + q, r E {1, .. . ,k - 1}, q E {O, .. . ,1- 1}. Then two intervals of
consecutive periods remain for placing k - 1 jobs in C:

[8+1, 8+(r-1).p+q]and [8+(r+1)·p+q, s+k·p-1].

But it is easy to check that no k - 1 jobs can start in these intervals. This es­
tablishes the validity of (4.22). Let us show now that (4.22) is facet-defining.

n T-p+l

Let F = {x E P: LLXjt+ L Xit+ 2 L Xit = k},andsuppose L L 7rjtx.
#itEG tEA\D tED j=l t=l

7ro for all x E F.
Consider a solution with job j, j f:. i, starting at period t E 6\ {8 + k . p - 1}.
Let the other jobs start at t - p, t - 2 p, ... , and at t + p + 1, t + 2 p + 1, ... ,
while ensuring that x E F (this is always possible). Shifting job j towards
period t + 1 proves that

7rjt = 7r)D for all j f:. i, for all t E C. (4.23)

Section 4.4 85

Now, consider a solution with job i placed at t, with t E [s, s + 1 - 1], and
all other jobs at t - p, t - 2 p, ... , and t + p + 1, t + 2 p + 1, This can be
done in such a way that x E F, since t+p+ 1, t+2p+ 1, ... , t+ (k -1) .p+ 1
are k - 1 periods in C. Now, shifting job i from t to t + 1 proves that

1f'it = 1f'~nl for all t E [s, s + 1]. (4.24)

A similar argument shows:

1f'it = 1f'~n2 for all t E [s + k . p, s + k . p + 1 - 1]. (4.25)

Consider next a schedule x with job i starting at t, t E [s + r . p + 1, s +
(r + 1) . p - 2], for some 0 ::; r ::; k - 1, and k - 1 other jobs starting at
t - r . p, t - (r - 1) . p, ... , t - p, t + p + 1, ... , t + (k - r - 1) . p + 1. Notice
that the latter periods are all in C\D, and hence x E F. Comparing x with
another schedule in which job i starts at t + 1 shows that 1f'it = 1f'i,t+1 for
all t E [s + r . p + 1, s + (r - 1) . p - 2]. Also exchanging job i with one of
the other jobs which start in C\D shows, in combination with our previous
observations (4.23), (4.24) and (4.25) that:

(4.26)

Now, consider a solution with job i starting at t, tED and place the other
jobs at t - p, t - 2 p, ... and t + p, t + 2 p, ... , ensuring that the solution is
in F (notice that exactly k - 2 of these periods are in D, and hence in C).
Interchanging job i and job j i= i leads easily to

1f'it = 1f'1 for all tED. (4.27)

To prove 1f' jt = 1f'jut for all j, for all t (j. C, we refer to the construction used
in Theorem 4.5. Moreover, simple interchange arguments imply:

With these last equalities established and together with (4.23), (4.26) and
(4.27) the theorem follows easily. 0

Notice that there are O(pn2T) inequalities in the class (4.21). Hence, the
separation problem for this class of inequalities can be solved in polynomial
time.

86 Chapter 4

4.5 A cutting-plane algorithm for SEL

In this section, we describe an unsophisticated cutting-plane algorithm for
SEL, based on the results of sections 4.3 and 4.4, and we report on its perfor­
mance on randomly generated problem instances. We are mainly interested
in the question whether the inequalities derived in Section 4.4 are of any
practical relevance, that is whether they are able to cut off fractional solu­
tions of the problems we generated and whether they are able to improve
the LP lower bound. Therefore, no attempts were made to minimize or even
record running times of the algorithm for the various problem instances.
Concerning this topic of running times, we will restrict ourselves to some
general remarks later in this section.

The cutting-plane algorithm works as follows. We start with a model
consisting solely ofthe constraints (4.1). This model is solved to optimality
(we used the LP-package LINDO). Then the following six classes of inequal­
ities are searched successively in order to find violated inequalities (where R
denotes the following set of periods (see Section 4)
R={s, s+l, s+p, s+p+I, ... ,s+(k-1)·p, s+(k-1)·p+l}):

Class 1: constraints (4.2),

Class 2: constraints (4.8),

Class 3: constraints (4.9) with k > 1,

Class 4: constraints (4.21) witk k > 1,

Class 5: constraints (4.20) with IJI = 2, and S = R u {sd with 81

such that 1 ~ S1 ~ S - P or 8 + (k - 1) . P ~ S1 ~ T - 2p + 2,

Class 6: constraints (4.20) with IJI = 3, and S = R u {S1, S2} with
81, S2 such that 1 ~ S1, S2 ~ S - P or s + (k - 1) . p ~ S1, S2 ~ T - 2p + 2
and S1 ~ S2- p.

When violated inequalities are found, they are added to the model, the
extended model is solved to optimality and the whole process is repeated.
When no violated inequalities are detected or if an integral solution is found,
the algorithm stops.

A few implementation issues are worth mentioning. First, if violated
inequalities in one of the six classes are found, then subsequent classes are not
checked. Secondly, at each iteration, only those inequalities are maintained

Section 4.5 87

whose slack is smaller than 0.1; all other inequalities are removed from the
model. Observe also that, for all classes of valid inequalities used in this
algorithm, the separation problem is polynomially solvable.

The cutting-plane algorithm was tested on 60 problem instances divided
over 2 types. We generated 30 problem instances from Type 1, distributed
over 6 categories, where a category is determined by a specific choice of p
and n (see Table 4.1 for the problem instances of Type 1). Problem instances
of this type are such that eaeh cost-coefficient Cjt is drawn from a uniform
distribution whose range can also be found in Table 4.1.

Problem instances from Type 2 (see Table 4.2) represent the case of
weighted start-times with job-dependent release dates and deadlines. Here,
for each job j, the release date r j is an integer drawn uniformly between
1 and !pn; the deadline dj is an integer drawn uniformly between rj and
0.6pn, and a weight Wj is drawn from the uniform distribution between 1
and 10. The cost-coefficients of job j are now defined as follows:
COt = W o(t - r 0) if r ° < t < do 3 3 3 3- - 3
Cjt = M otherwise (where M denotes a large integer).
Similar cost functions are considered by Sousa and Wolsey (1992) for jobs
having arbitrary lengths.

In tables 4.1 and 4.2, LP denotes the value of the LP-relaxation of model
(4.1)-(4.3). CPA denotes the value found by the cutting-plane algorithm de­
scribed earlier, and OPT denotes the value of an optimal solution, which was
found by applying the branch-and-bound algorithm implemented in LINDO
(where only those variables which were fractional in the solution of the LP­
relaxation are forced to be 0 or 1). The symbol '(i)' denotes that the solution
found is integral. Notice that all cost-coefficients are integral, so that all
lower bounds computed can validly be rounded-up to the next integer.

, Let us first comment on the results depicted in Table 4.1. Regarding
the choice of T, preliminary experiments indicated that for relatively large
values of T (T ~ (p + 1) . n) as well as for minimal values of T (T =
p. (n + 1», the LP-relaxation of model (4.1)-(4.3) almost always has an
integral optimal solution. So, we tried to choose T in such a way that
fractional LP-relaxations arise.

88 Chapter 4

LP CPA OPT LP CPA OPT

p=2 1 4 (i) 4 (i) p=3 1 14.25 14.40 15
n = 20 2 7 (i) 7 (i) n= 30 2 14.00 14.47 15
T=46 3 6.50 7 (i) T = 102 3 15.21 15.60 17
Cjt in 4 12.33 13 (i) Cjt in 4 9 (i) 9 (i)
[0-25] 5 9 (i) 9 (i) [0-40] 5 10.00 10.67 11

p=2 1 7 7 (i) p=4· 1 15.00 15.81 17
n = 30 2 10.5 11 (i) n= 20 2 19.50 22 (i)
T=66 3 9 9.5 10 T=93 3 20.08 21.33 22
Cjt in 4 11.11 11.38 12 Cjt in 4 23.00 24.40 26
[0-25] 5 7.33 8 (i) [0-60] 5 23.43 25 (i)

p=3 1 4.88 5 (i)
..

p=5 1 12.62 14.5 16
n= 20 2 8.17 9 (i) n= 20 2 11.00 11 (i)
T=67 3 11.27 11.43 12 T = 114 3 21.17 22.88 23
Cjt in 4 8 (i) 8 (i) Cjt in 4 22.14 24.24 26
[0-25] 5 9.67 10 (i) [0-60] 5 15.90 16 (i)

Table 4.1

For the 30 instances considered in Table 4.1, the cutting-plane algorithm
finds 17 times an integral solution (compared to 5 times for the LP-relaxation
of (4.1)- (4.3» and, for the remaining instances, it improves the lower bound
9 times. Not surprisingly, the results indicate that the problems get harder
when p and/or n increase. For the 'easier' problems (p = 2, n = 20,30
and p = 3, n = 20), the cutting-plane algorithm often finds integral optimal
solutions. For the 'harder' problems (p = 3, n = 30, and p = 4,5, n =
20) the algorithm usually improves the lower bound obtained from the LP­
relaxation of (4.1)-(4.3). In case the cutting-plane algorithm terminated
with a fractional solution, it had used inequalities from all six classes. So,
for this type of problems, it appears that the inequalities derived in Section
4.4 are quite useful. The I:unning time of the cutting-plane algorithm largely
depends on the number of LP's which have to be solved. Generally speaking,
this number increases from 10-20 for the easy problems to 80-120 for the
hard problems. Of course, one can influence this number by the strategy
one employs in adding valid inequalities.

Section 4.5 89

Consider now the problem instances of Type 4.2. For this type, the LP­
solutions very often turned out to be integral. We employed the following
strategy in order to get instances whose LP-solution was not integral. For
each of the categories, we continued generating random problem instances
until 5 problems were available whose LP-solution was fractional. The total
number of instances we had to generate for each category to find those 5 in­
stances can be found in Table 4.2. Next, we ran the cutting-plane algorithm
on the 30 instances we had selected in this way.

LP CPA LP CPA

p=2 1 9016 9018 (i) p=3 1 12258 12258 (i)
n = 20 2 9039 9039 (i) n = 30 2 13110 13110 (i)
T=46 3 9007.5 9008 (i) T = 102 3 12221 12221 (i)
5 out 4 9048 9049 (i) 5 out 4 12142 12143 (i)
of 33 5 8048 8048 (i) of 11 5 12112 12112 (i)

p=2 1 13035 13035 (i) p=4 1 8597.5 9046 (i)
n = 30 2 13037.5 13041 (i) n = 20 2 9098 9098 (i)
T= 66 3 12081 12081 (i) T = 93 3 8035 8035 (i)
5 out 4 14034 14034 (i) 5 out 4 9030 9033 (i)
of 20 5 12145 12145 (i) of 8 5 8062 8062 (i)

p=3 1 8071 8071 (i) p=5 1 8307 8307 (i)
n = 20 2 9026 9026 (i) n = 20 2 10103 10103 (i)
T= 67 3 8079 8079 (i) T = 114 3 9116 9116 (i)
5 out 4 8052.5 8053 (i) 5 out 4 8127 8127 (i)
of 29 5 8050 8050 (i) of 14 5 9063 9063 (i)

Table 4.2

The results summarized in Table 4.2 show that the algorithm works quite
satisfactorily for this type of problem instances. In all cases, the algorithm
finds an integral solution. The LP lower bound is improved 8 times. For 14
problem instances, inequalities from class 2 were used; 6 times inequalities
from class 3 were used, and twice inequalities from class 4 and 5 were used.
Except for two problem instances, the number of iterations was below 20.

90 Chapter 4

Acknow:ledgements: We are grateful to Antoon Kolen for pointing out
the inequalities (4.20) to us, and to Hans-Jurgen Bandelt for his comments
on an earlier version of this paper.

Chapter 5

The tool loading problem:
• an overVIew

5.1 Introduction

In this chapter we identify some basic models for production planning in
FMSs. In doing so, we set the stage for Chapters 6-9 where some of these
models are more thoroughly investigated.

As described in Chapter 1, the ability of an FMS to perform various
types of operations without requiring prohibitive effort is one of the charac­
teristics which differentiates aflexible production system from a traditional
one. This ability is called machine flexibility in Browne et al. (1984). Ma­
chine flexibility is directly related to the capacity of the tool magazine and to
the ease with which tools can be interchanged between the magazine and the
tool holder. Therefore, planning models that explicitly take into account the
bounded capacity of the tool magazine or the limitations and opportunities
offered by tool changes are especially characteristic of flexible production
systems as opposed to traditional ones.

5.2 Machine flexibility and tool management

The influence of tool management on the overall performance of automated
production facilities has been stressed by several authors. The recent articles
by Gray, Seidmann and Stecke (1993) and Veeramani, Upton and Barash
(1992) contain comprehensive surveys of the literature on this topic.

At the individual machine level (as opposed to the tool or system levels
(see Grayet al. (1993)), tool management subsumes the problem of allocating
tools to the machine and simultaneously sequencing the parts to be processed
so as to minimize some measure of production performance. This generic
one machine scheduling problem, or loading problem in the terminology of
Stecke (1983), can somehow be seen as the FMS analog of the fundamental
one machine scheduling problem in traditional manufacturing.

A more precise formulation of the problem can be stated as follows. A
part set or production order containing N parts must be processed, one part
at a time, on a single flexible machine. Each part requires a subset of tools
which have to be placed in the tool magazine of the machine before the part
can be processed. The total number of tools needed to process all parts is
denoted by M. We represent these d'ata by an M X N tool-part matrix A,
with

aij 1 if part j requires tool i

o otherwise,

94 Cbapter 5

for i = 1, ... , M and j = 1, ... , N. The tool magazine features C tool
slots. When loaded on the machine, tool i occupies Si slots in the magazine
(i = 1, ... , M). We assume that no part requires more than C tool slots for
processing. We refer to the number C as the capacity of the magazine and to
Si as the size of tool i. (Typical magazine capacities lie between 30 and 120.
Tool sizes are usually in the range {1,2,3}, with tools of size 1 being most
common (see Stecke (1989». The total number of tools required, i.e. M,
can be much larger than C, so that it is sometimes necessary to change tools
while processing the order. A tool switch consists in removing one tool from
the magazine and replacing it by another one. A batch ,of parts is called
feasible if it can be processed without any tool switches.

Additional data for the problem may include the processing time of each
part, the total time available on the machine, the tool changeover time, the,
operating cost of each tool, the number of tools of each type, etcetera (see
Berrada and Stecke (1986), Kouvells and Lee (1991), Mazzola, Neebe and
Dunn (1989), Rajagopalan (1985;1986), Stecke (1983) and de Werra and
Widmer (1990». Due dates, however, are usually not taken into considera­
tion in this short-term framework (see Hwang and Shogan (1989), Moreno
and Ding (1993), Rajagopalan (1985) and Widmer (1991) for exceptions to
this statement).

The objective function of the one-machine loading problem can reflect
various tactical goals:

• maximizing the number of parts that can be produced without tool
switching (Crama and Mazzola (1995), Hirabayashi et al. (1984),
Hwang (1986), Hwang and Shogan (1989), Stecke (1983) and Stecke
and Kim (1988»,

• maximizing the use of the magazine (Stecke (1983»,

• minimizing the number oftool switches (Bard (1988), Follonier (1994),
Privault and Finke (1993), and Tang and Denardo (1988a); see also
Chapter 9),

• minimizing the number of times that production must be interrupted
for tool switches (Hwang (1986), Rajagopalan (1985, 1986), Stecke and

'. Kim (1988), and Tang and Denardo (1988b); see also Chapter 6), or

.• optimizing more general performance measures (Kouvelis and Lee (1991),
Mazzola, Neebe and Dunn (1989), Rajagopalan (1985), de Werra and
Widmer (1990), Whitney and Gaul (1985) and Widmer (1991».

Section 5.3 95

(In multi-machine environments, balancing the workload often becomes a
primary objective; see for instance Berrada and Stecke (1986), Sodhi, Agnetis
and Askin (1994), Stecke (1983) and Stecke and Kim(1989).) In the next
section we briefly present the main integer programming formulations that
have been proposed in order to model the magazine capacity constraint and
the interdependence between tools and parts. Then, we successively tackle
three of the most basic objective functions (maximizing the number of parts
in a feasible batch, minimizing the number of switching instants, minimizing
the total number of tool switches).

Notice that, by restricting our attention to a few fundamental one­
machine scheduling models, we will only touch upon the surface of tool
management issues in flexible manufacturing systems. Many combinatorial
models of interest also arise in connection with other tool management prob­
lems (for instance tool provisioning and arrangement and retrieval of tools
in the magazine). For a discussion of these -we refer to the surveys of Gray
et al. (1993) and Veeramani et al. (1992).

5.3 Modeling the magazine capacity constraint

5.S.1 A linear model

We concentrate here on the simple case where no tool switches are allowed
during the planning period (or, equivalently, we restrict our attention to a
production period between successive tool switches). Under this restriction,
the loading problem becomes one of selecting an 'appropriate' feasible batch
of parts. Integer programming formulations of this problem usually rely on
(some or all of) the following variables:

and

Xi = 1 if tool i is loaded in the tool magazine

= 0 otherwise

Yj = 1 if part j is processed during the period under consideration

= . 0 otherwise

for i = 1, ... , M and j = 1, ... , N.
With these variables, the basic constraints of the one-machine loading

problem can be formulated as:

aijYj ::; Xi for i = 1, ... , M and j = 1, ... , N (5.1)

96 Chapter 5

M

2: SiXi < C (5.2)
i=l

Xi E {O, I} for i = 1, ... , M (5.3)

Yj E {O, 1} for j = 1, .. . ,N. (5.4)

The first group of constraints (5.1) expresses that all the tools needed for
processing the selected parts must be loaded' in the magazine. Constraint
(5.2) translates the limitations imposed by the capacity of the magazine.

The simple formulation (5.1)-(5.4), augmented with a general objective
function of the form

N M
maximize 2: QjYj + 2: ,Bixi, (5.5)

j=l i=l

has been proposed in Hirabayashi et al. (1984) to model the one-machine
loading problem. It has been further examined in Crama and Mazzola
(1995), Goldschmidt, Nehme and Yu (1994), Hwang (1986) and Hwang and
Shogan (1989) and Stecke and Kim (1989). The formulation can also be eas­
ily extended to account for multiple machines or for the possibility to switch
tools between production periods. Multi-period, multi-machine extensions
can be found for instance in Goldschmidt, Hochbaum and Yu (1992), Jaiku­
mar and van Wassenhove (1989), Kouvelis and Lee (1991), Mazzola et al.
(1989), Rajagopalan (1985), Tang and Denardo (1988a) and de Werra and
Widmer (1990) and in numerous other papers. Thus formulation (5.1)-(5.4)
can be viewed as an essential component of many complex FMS tool loading
models.

Interestingly, model (5.1)-(5.5) has also been considered in areas rather
remote from the FMS world. It appears for instance in an order selection
problem with high setup costs (Dietrich, Lee and Lee (1993», in capital
budgeting models and in repair kit selection (Marner and Shogan (1987» and
in a provisioning model proposed in Lawler (1976). An application to the
allocation of memory space in databases is described in Goldschmidt et al.
(1994). A restricted version (corresponding to the case where, two tools are
needed for processing each part) also arises in a column generation approach
to a graph partitioning model of compiler construction (Johnson, Mehrotra
and Nemhauser (1993». As observed in Crama and Mazzola (1995), the
full model (5.1)-(5.5) similarly arises if column generation is used to tackle
hypergraph partitioning problems relevant to VLSI layout.

Section 5.3 97

5.3.2 Nonlinear models

Problem (5.1)-{5.5) can alternatively be modeled as a nonlinear integer prob­
lem in (at least) two different ways. To see this, let us first assume without
loss of generality that, in (5.5), O:j ~ 0 for j = 1, ... , N {if this is not the
case, then the corresponding variable Yj can be set to 0 in an optimal solu­
tion of (5.1)-{5.5». Then, by elimination of the y-variables, (5.1)-{5.5) can
be equivalently reformulated as a nonlinear knapsack problem

N M

maximize E O:j IT Xi + E f3ixi
j=l i:a;j=l i=l

M

subject to E SiXi :::; C
i=l

Xi E {O, I} for i = 1, .. . ,M.

(5.6)

(5.7)

(5.8)

The nonlinear knapsack problem with a quadratic objective function has
been investigated in Chaillou, Hansen and Mahieu (1989), Gallo, Hammer
and Simeone (1980) and Hammer and Rader (1994). More generally, because
the coefficients of all its nonlinear terms are nonnegative, the objective func­
tion (5.6) is supermodularj hence, (5.6)-(5.8) can be viewed as a special case
of the supermodular knapsack problem studied in Gallo and Simeone (1988).

On the other hand, Stecke (1983) suggested to model the magazine ca­
pacity constraint by the following nonlinear inequality in the y-variables

E(-l)IJI+1s(J) IT Yj :::; C, (5.9)
J~0 jeJ

where the summation runs over all nonempty subsets J ~ {I, ... , N} and
s(J) denotes the sum of sizes of the tools common to all the parts in J.
Denote by g(y) the left-hand side of (5.9). For any y E {O,l}M, g(y) is
nothing but the inclusion-exclusion formula computing the sum of the sizes
of the tools needed in order to process the batch {j E NIYj = I}. Hence,
(5.9) is a valid expression ofthe capacity constraint. This expression can be
viewed as resulting from the elimination of the x-variables in (5.1)-(5.2).

When the x-variables do not appear in the objective function (5.5) (which
is the case in the framework of Stecke (1983», then an alternativ~ formula­
tion of (5.1)-(5.5)is given by

N

maximize E O:j Yj
j=l

(5.10)

98

subject to L(-l)IJI+IS(J)IIjeJYj ~ C
#0
Yj E {0,1} for j = 1, ... ,N.

Chapter 5

(5.11)

(5.12)

This model has a linear objective function and a single nonlinear con­
straint, and only involves the y-variables. (Contrast this with the formula­
tion (5.6)-(5.8), which has a nonlinear objective function, a linear constraint,
and only involves the x-variables.) The merits ofthis model with respect to
the linear model (5.1)-(5.5) will be discussed in the next section.

5.4 Solving the batch selection problem

Let us now survey some of the approaches that have been proposed to solve
the batch selection problem (5.1)-(5.5) (or, equivalently, (5.6)-(5.8) or (5.10)­
(5.12».

The batch selection problem is strongly NP-hard. As a matter of fact,
Gallo et al. (1980) observed that it is already NP-hard when each part re­
quires two tools (Le., when (5.6)is quadratic), aj = 1 for j = 1, .. . ,N,(3i = 0
and Si = 1 for i = 1, ... , M. A further refinement of this result is es­
tablished by Goldschmidt et al. (1994). These authors also identify some
polynomially solvable cases of the problem and describe a dynamic program­
ming algorithm for its solution. Several authors have developed and tested
branch-and-bound codes based on the ideas surveyed hereunder.

In an early attempt to apply mathematical programming techniques to
the solution of the batch selection problem, Stecke (1983) investigated var­
ious procedures to transform (5.10)-(5.12) into a 0-1 linear programming
problem. One of these procedures is the standard linearization method pro­
posed in Glover and Woolsey (1974). This method can be viewed as re­
placing (5.11) by a family of weaker inequalities, each of which is derived
by substituting a linear function for every monomial of g(y). Crama and
Mazzola (1992) proved that the linear description obtained in this way is
weaker than the description (5.1)-(5.4), in the sense that its continuous re­
laxation defines a larger feasible region than the relaxation of (5.1)-(5.4). As
a consequence, algorithmic approaches based on the inclusion-,exclusion for­
mulation (5.11)-(5.12) appear less promising than those based on the linear
formulation (5.1)-(5.4).

A fundamental observation regarding the batch selection problem is that
the subproblem defined by (5.1), (5.3)-(5.5) (and omitting capacity con­
straint (5.2» is polynomially solvable. Indeed, the constraint matrix of (5.1)

Section 5.4 99

is totally unimodular, so that the subproblem is reducible to a network
maximum :O.ow problem. It follows that the Lagrangian dual of (5.1)-(5.5)
obtained by the relaxation of the capacity constraint is polynomially solvable
and has the same optimal value as the linear relaxation of (5.1)-(5.5). This
observation has been exploited by several authors in order to efficiently solve
the linear relaxation (5.1)-(5.5), and hence to compute an upper bound on
the optimal value ofthe problem (Chaillou et al. (1989), Gallo and Simeone
(1988), Hwang and Shogan (1989) and Mamer and Shogan (1987)).

Unfortunately, as observed in Dietrich et al. (1993), Hwang and Shogan
(1989) and Johnson et al. (1993) (see also Chapter 6), the linear relaxation
of (5.1)-(5.5) is often extremely weak. This has motivated researchers to
investigate families of inequalities which could be used to strengthen the
formulation (5.1)-(5.5). Specifically, Dietrich et al. (1993) concentrate on
cuts 'implied. by optimality considerations', that is on inequalities satisfied
by at least one optimal solution better than an incumbent solution (assuming
that such an optimal solution exists). For the quadratic case (two tools per
part), Johnson et al. (1993) present strong valid inequalities and facets for
the convex hull of the feasible region defined by (5.1)-(5.4). Crama and
Mazzola (1992) systematically investigate the polyhedral structure of (5.1)­
(5.4). They derive several families of valid and/or facet-defining inequalities,
some of which generalize results in Johnson et al. (1993). When N = 1 (one
part) and Si = 1 for i = 1, ... , M, they obtain a complete description of
the convex hull of the feasible region (subproblems with N = 1 naturally
arise when one attempts to solve (5.1)-(5.5) via Lagrangian decomposition).
Computational experiments will be necessary to establish the usefulness of
the polyhedral approach to the batch selection problem.

Numerous heuristics have been proposed for the solution of the batch
selection problem. Most of these heuristics are of the greedy type: a selection
rule is iteratively used to add parts to the current batch, as long as magazine
capacity allows. Heuristics proposed in Dietrich et al. (1993), Rajagopalan
(1985, 1986), Stecke and Talbot (1985), Tang and Denardo (1988b) and
Whitney and Gaul (1985) (see also Chapter 6) are of this nature. As far
as we are aware, the relative performance of these heuristics has not been
directly tested on the batch selection problem, but only when batch selection
is iteratively solved to produce a solution of the job grouping problem (see
Kuhn (1990) and Chapter 6). In this framework, the most effective selection
rules appear to rest on ,(variants of) the following principle: among the
parts not yet in the batch, select one that has the largest number of tools in
common with the parts already in the batch (this is the Maximal Intersection

100 Chapter 5

rule described in Chapter 6; see also the MIMU rule in Tang and Denardo
(1988b) and Whitney and Gaul (1985»

A local search heuristic is proposed in Dietrich et al. (1993). Heuristics
based on Lagrangian relaxation schemes have been tested in Hwang and
Shogan (1989) and Mamer and Shogan (1987). Heuristics directly motivated
by the quadratic knapsack formulation are considered in Hammer and Rader
(1994).

In conclusion, it seems that the basic integer programming model (5.1)­
(5.5) is a rather ubiquitous one, and that the simplicity of its appearance is
quite misleading. In particular, an intriguing question is that of the worst­
case behavior of heuristics for the batch selection problem. It was observed
by Crama and van de Klundert (1992, 1996) that most greedy-type heuristics
have unbounded worst-case ratio for this problem. On the positive side,
Kortsarz and Peleg (1993) describe a polynomial approximation algorithm
with ratio O(MO.5) for the special case where each part requires two tools,
Pi = 0 and Si = 1 for i - 1, ... , M (the exponent 0.5 can be slightly reduced
at the cost of additional work). It would be interesting to extend these
results to more general cases.

5.5 Grouping of parts and tools

In the previous section, we have focused on the problem of selecting a fea­
sible batch, i.e. a subset of parts that could be produced without any tool
switches. In general, however, the problem faced by the shop is that of pro­
cessing the whole set of N parts as efficiently as possible. One way of turning
this informal goal into a precise planning problem goes as follows: find a
partition of the parts into a minimum number of feasible groups (batches).
Equivalently, the objective function of this job grouping (or tool-part group­
ing) problem is to minimize the number of tool switching instants. This
objective is appropriate in situations where the automatic tool interchang­
ing device can switch a set of tools simultaneously (see Hirabayashi et al.
(1984), Stecke and Kim (1988) and Tang and Denardo (1988b). It is also
relevant if the machine has to be shut down during tool int,erchanges. In­
deed, in such a case, the fixed cost incurred for interrupting production may
dwarf the time spent in actual tool switches (see Goldschmidt et al. (1992)
and Hwang (1986».

Let us also mention that the job grouping problem is closely related in
spirit to the group technology cell formation problem, which has recently gen-

Section 5.5 101

erated an enormous amount of literature (see Askin and Standridge (1993)
and Crama and Oosten (1996». The objective functions of these two prob­
lems, however, are quite different. Moreover, many of the best known ap­
proaches to the cell formation problem (King and Nakornchai (1982) and
McCormick Schweitzer and White (1972» do not explicitly model the ca­
pacity constraints which play an essential role for job grouping.

The job grouping problem is thoroughly discussed in Chapters 6, 7 and
8. The problem has been studied by several authors, by and large ignor­
ing each other. Rajagopalan (1985;1986) and Tang and Denardo (1988b)
observed that partitioning parts into a minimum number of batches can be
seen as an extension ofthe classical bin packing problem (see also Stecke and
Talbot (1985». Hence, the part grouping problem is NP-hard (Tang and
Denardo (1988b». In Chapter 6 we notice thatthe problem remains NP­
hard even when C = 3, and that deciding whether there exists a partition of
the parts into two feasible groups is NP-cbmplete. The latter result is es­
pecially interesting, as it establishes an unexpected connection between tool
management problems and certain optimization problems related to VLSI
and PLA (Programmable Logic Array) layout, such as those discussed in
Mohring (1990). More precisely, in our terminology, the PLA block folding
problem can be interpreted as that of determining the minimum value of the
magazine capacity C such that the parts can be partitioned into two feasible
batches. The PLA block folding problem is known to be NP-hard and is it­
self closely related to a wide variety of combinatorial problems (see Mohring
(1990) for details). It may be worthwile to further exploit this intriguing
connection between FMS and VLSI models (more on this topic in: the next
section).

Various heuristic approaches have been proposed for the job grouping
problem. Most of these heuristics iteratively solve (some version of) the
batch selection problem in order to sequentially create feasible batches con­
taining a 'large' number of parts (see Hwang (1986), Kuhn (1990), Ra­
jagopalan (1985, 1986), Stecke and Kim (1988), Tang and Denardo (1988b)
and Whitney and Gaul (1985». Based on computational experiments with
randomly generated instances, this greedy approach seems to perform well
when the batch selection subproblem is solved by heuristics baSed on some
variant of the Minimum Intersection principle (see Chapters 6 and 7).

From a theoretical viewpoint, however, most of the above heuristics can
be shown to have extremely bad worst-case performance ratio's (see Crama
and van de Klundert (1992, 1996». For instance, the MIMU heuristic (Tang

102 Chapter 5

and Denardo (1988b» can produce a partition roughly (C~2) IC times

more batches than an optimal partition. This is especially striking in view

of the fact that any arbitrary partition never uses more than (C~2) times

the optimal number of batches!
Goldschmidt et al. (1992) describe polynomial approximation algorithms

for some special cases of the job grouping problem. But more general results
are called for. Let us notice here that, in particular any polynomial p­
approximation algorithm for the batch selection problem can be turned into a
polynomial algorithm with approximation ratio O(p logN) = O(pC) for the
job grouping problem, as follows from general properties of greedy algorithms
(see for instance Crama and van de Klundert (1994;1996»

Hirabayashi et al. (1984) formulated the job grouping problem as a large­
scale set covering problem. In this formulation, each column corresponds to
a feasible batch of parts and the constraints express that each part must be
included in some batch. The authors mention the possibility to solve this
set covering formulation using a column generation approach, and concen­
trate further on developing a branch-and-bound procedure for the column
generation subproblem. The latter subproblem turns out to be exactly our
old friend, the batch selection problem (5.1)-(5.5).

Hwang (1986) (see also Hwang and Shogan (1989» and Tang and Denardo
(1988b» rediscovered the previous set covering formulation, but, because of
its size, did not use it for algorithmic purposes. These authors decided
instead to rely on greedy heuristics (as mentioned above) or specialized
branch-and-bound algorithms. In Chapter 6, a column generation procedure
is implemented that solves the linear relaxation of the set covering formula­
tion of the problem. Computational experiments indicate that this approach
delivers extremely strong lower bounds (almost always equal, in these exper­
iments, to the optimal value of the problem). Moreover, the approach also
lends itself to the computation of good heuristic solutions. Altogether, the
column generation approach allows to solve to optimality much larger and
sparser instances than those previously tackled.

5.6 Tool switching

In some situations, the total number of tool switches incurred while pro­
cessing an order appears to be a more relevant performance criterion than

Section 5.6 103

the number of switching instants (Le., the number of batches). This is for
instance the case when the setup time of operations is proportional to the
number of tool interchanges, or when the tool transportation system is con­
gested. The distinction between the number of tool switches and number of
switching instants is clearly drawn in Tang and Denardo (1988a, 1988b) and
is also discussed at length in Amoako-Gyampah (1994), Sodhi et al. (1994)
and Stecke and Kim (1988).

In Chapter 9, we address the following tool switching problem: determine
a part input sequence and an associated sequence of tool loadings such that
all the tools required by the j-th part are present in the j-th tool loading
and the total number of tool switches is minimized. In this form the tool
switching problem has been investigated in Bard (1988), Follonier (1994),
Jaikumar and van Wassenhove (1989), Privault (1994), Privault and Finke
(1993), Roger (1990), Tang and Denardo (1988a), de Werra and Widmer
(1990), Widmer (1991). All these papers are restricted to the special case
where the tools occupy exactly one slot in the magazine. We shall assume
that this condition holds throughout the section. (Notice that the formula­
tion of the problem becomes ambiguous when this assumption is lifted).

In Chapter 9 we prove that the tool switching problem is NP-hard for
any fixed C ~ 2. We also observe that deciding whether there exists a job
sequence requiring exactly M tool setups is NP-complete. The latter result
follows immediately from the kinship of the tool switching problem to the
VLSI gate matrix permutation problem discussed in Mohring (1990). In our
terminology, the gate matrix· permutation problem asks for the minimum
value of the tool magazine capacity such that no tool needs to be set up
twice. Since this problem is NP-hard, the tool switching problem must
clearly be NP-hard, too. (Notice the similarity of this argument with the
one presented earlier for the job grouping problem).

The tool switching problem decomposes into two interdependent prob­
lems, namely:

(1) part sequencing: determine an optimal part sequence, and

(2) tooling: given a fixed part sequence, determine a tool loading sequence
that minimizes the number of tool switches.

This is a two-level scheduling model, in the sense of Blacewicz and Finke
(1994).

Tang and Denardo (1988a) established that the tooling subproblem can
be solved in time OeM N) by applying the so-called Keep Tool Needed Soon-

104 Chapter 5

est (KTNS) policy. This policy prescribes that, whenever tools must be
removed from the magazine in order to make room for the tools required
by the next part, then the tools that are kept should be those that will be
needed the soonest in the future. As observed by Privault and Finke (1993)
(see also Blacewicz and Finke (1994», the optimality of the KTNS principle
was previously established by Belady (1966) for a restricted version of the
tooling problem, in his investigation of paging techniques for computer mem­
ory management. In a two-level memory system, a page fault occurs when
a page must be moved from fast memory to slow memory to make room for
a new page. The paging problem is that of deciding, for a given sequence of
page requests, which pages to keep in a fast memory of C pages in order to
minimize the number of page faults (see Belady (1966) and McGeoch and
Sleator (1991». Thus, the paging problem is formally equivalent to a tooling
problem in which each part would require exactly one tool.

Tang and Denardo's proof of correctness for the KTNS principle relies
on ad hoc combinatorial arguments. In Chapter 9, we present a more com­
pact proof based on an appropriate integer programming formulation of the
tooling subproblem. The constraint matrix of this formulation has the con­
secutive ones property for columns, i.e. it is an interval matrix in the sense
of Fulkerson and Gross (1965) and Nemhauser and Wolsey (1988). This
directly implies that the tooling subproblem is reducible to a network max­
imum flow problem, even in its generalized version where each tool i has its
own setup time bi and the objective is to minimize the sum of all setup times
(see Chapter 9). When all setup times are equal, i.e. when the objective
is only to minimize the total number of switches, then the integer program
can be solved by a greedy algorithm which turns out to be equivalent to
the KTNS algorithm (this follows from more general results on greedy and
totally balanced matrices; see Hoffman, Kolen and Sakaroyitch (1985) and
Nemhauser and Wolsey (1988».

The previous results have been further extended by Privault and Finke
(1993). These authors give a direct network flow formulation of the tooling
subproblem which allows them to model changeover costs of the form dik

when loading tool i after unloading tool k. (Interestingly, this formulation
is inspired from related work on the computer paging problem mentioned
above). This approach leads to an O(N2) optimization algorithm for the
generalized tooling subproblem.

(We observe here, in passing, that nothing seems to be known concerning
the complexity of the tooling subproblem when tool sizes are not uniform.)

In spite of the simplicity of the tooling subproblem, the tool switching

Section 5.6 105

remains a hard nut to crack. Many heuristics have been proposed for its
solution, but we are not aware of any succesful attempts to solve reasonably
large instances to optimality. As a consequence, the performance of different
heuristics can only be compared relative to each other, as is done in Fol­
lonier (1994), Privault (1994), Privault and Finke (1993), Tang and Denardo
(1988a) and in Chapter 9. In Chapter 9 we also present partial results and
suggest directions which may be worth exploring in order to compute tight
lower bounds on the optimal value of the tool switching problem. More work
is clearly needed on this question.

Heuristics for the tool switching problem come in two flavors: construc­
tion heuristics, which progressively construct a single, hopefully good part
sequence, and local search heuristics, which iteratively modify an initial part
sequence. In the first class, several approaches are based on approximate
formulations of the tool switching problem as a traveling salesman problem,
where the 'distance' between two parts is aft estimate of the number of tool
switches required by these parts (see Privault (1994), Privault and Finke
(1993), Tang and Denardo (1988a) and Chapter 9). It may be interesting to
notice that one of these traveling salesman formulations (namely, the block
minimization model in Chapter 9) is in fact an exact model for a database
management problem closely resembling the tool switching problem (see
Kou (1977)). Another type of construction heuristics fall into the category
of 'greedy' heuristics: parts are successively added to a current subsequence
on the basis of some (dynamically updated) priority criterion (see Follonier
(1994) and Chapter 9). In Privault (1994) and Privault and Finke (1993),
an efficient greedy-type heuristic is developed by drawing on ideas used in
McGeoch and Sleator (1991) for the solution of on-line paging problems.

Various local search strategies (2-exchanges, tabu search) for the tool
switching problem have been tested in Follonier (1994), Privault (1994), Pri­
vault and Finke (1993), Roger (1993), Tang and Denardo (1988a), Widmer
(1991) and in Chapter 9.

Chapter 6

A column generation
approach to job grouping

6.1 Introduction

An FMS consists of a number of numerically controlled machines, linked by
automated material handling devices, that perform the operations required
to manufacture parts. The tools required by these operations are stored in a
limited capacity tool magazine attached to each machine. An automated tool
interchanging device enables the machine to interchange tools very quickly
(in seconds). This fast tool interchanging capability avoids costly setups
while producing with the tools available in the magazine, and is an essential
feature of FMSs. When it becomes necessary to add tools to the tool mag­
azine to allow new operations, the machine sometimes has to be shutdown
while the tools are interchanged, after which the machine may resume pro­
duction. The latter type of setup is time-consuming (it may take up to two
hours). The performance of an FMS may therefore be considerably boosted
by reducing the occurrences of these setups.

In this chapter we study a model which aims at minimizing the number
of setups. We assume that a number of jobs must be processed on a single
machine. The job grouping problem asks for a partition of the jobs into a
minimum number of groups (batches), such that the jobs in each group do
not require more tools than can be stored in the tool magazine (see Section
6.2 for a precise formulation of the model). This is equivalent to minimizing
the number of setups in the situation described above.

The job grouping problem has been studied by different authors, who
largely ignore each other. Hirabayashi et al.(1984) refer to it as the 'opti­
mal parts grouping problem' and propose a set covering formulation of it.
They mention the possibility to solve this set covering formulation using
a column generation approach, but concentrate in their paper on develop­
ing a branch-and-bound procedure for the column generation subproblem
(see Section 6.2). Hwang (1986) investigates the equivalent 'optimal part
type grouping problem'. He proposes to solve it approximately by sequen­
tially creating groups that consist of a maximum number of jobs (this is in
fact equivalent to solving the set covering formulation of the problem by a
greedy heuristic; see Section 6.3). Hwang and Shogan (1989) use branch­
and-bound to solve the sequence of subproblems. Hwang (1986) remarks
that other sequential approaches (Whitney and Gaul, 1985) and group tech­
nology approaches (Chakravarty and Shtub, 1984) exist for part grouping
problems, although the latter are inapplicable to FMS because they disre­
gard tool magazine capacity limitations. In Hwang and Shogan (1989) the
approach of Hwang (1986) is extended to allow the consideration of due

110 Chapter 6

dates. Rajagopalan (1985; 1986) gives a general model, which incorporates
the job grouping problem as a special case. He presents a number of heuris­
tic procedures for its solution (some of these will be presented in Section
6.3). Stecke and Kim (1988) have extended and made comparisons between
the procedures of Rajagopalan (1985), Whitney and Gaul (1985) and Hwang
(1986). Rajagopalan (1985; 1986) and Tang and Denardo (1988b) observe
that partitioning jobs into a minimum number of batches can be seen as
packing the jobs into a minimum number of bins with fixed capacity. It
follows that the bin packing problem is a special case of the job grouping
problem, and hence, that the latter is NP-hard (Tang and Denardo, 1988b).
Tang and Denardo (1988b) present a non-LP based branch-and-bound pro­
cedure for job grouping. They propose non-trivial lower bounds (see Section
6.2), and heuristics similar to Rajagopalan's (see Section 6.3). Kuhn (1990)
has developed and tested more heuristics for job grouping. Related problems
in process planning are also studied by Kusiak (1985b), Finke and Kusiak
(1987) and Bard and Feo (1989).

In this chapter, we implement a column generation approach to solve the
linear relaxation of the set covering formulation of the job grouping problem.
We demonstrate experimentally that this approach leads to the derivation
of extremely strong lower bounds (always equal, in our experiments, to the
optimal value of the problem). The column generation scheme is presented
in Section 6.2. In Section 6.3, heuristic solution procedures are suggested.
The implementation of our procedures is described in Section 6.4. Section
6.5 reviews our computational experiments with these procedures. Section
6.6 contains some conclusions.

6.2 Lower bounds

In this section, we present formulations for the job grouping problem and
explain the column generation approach we used to derive lower bounds on
its optimal value. Some easier, but weaker lower bounds are also discussed.

6.2.1 The job grouping problem

The job grouping problem can be described by the following model (Hirabayashi
et al., 1984; Hwang, 1986; Tang and Denardo, 1988b). Assume there are N
jobs and M tools. The basic data are the capacity C of the tool maga­
zine and the tool requirements for the jobs. These tool requirements are

Section 6.2 111

represented by a so-called tool-job matrix A of dimension M x N, with:

aki = 1 if job i requires tool k
= 0 otherwise,

for k = 1, ... , M and i = 1, ... , N. We call a subset (group) S of jobs (or
of columns of A) feasible if these jobs together require at most C tools, i.e.
if I {k : EiES aki ~ 1} I ~ C. The job grouping problem consists in finding a
minimum set offeasible groups such that each job is contained in (at least)
one group. To formulate this as a set covering problem, let us suppose that
there exist P feasible groups, and let

% = 1 if job i is contained in the feasible group j,
= 0 otherwise,

for i = 1, ... , Nand j = 1, ... , P. The job grouping problem is:

p

minimize 'EYj
j=l
P

subject to 'Eq .. y. > 1
~J J - i=l, ... ,N,

j=l

y' > 0 J - j = 1, ... , P,

Yj integer j = 1, .. . ,P,

(6.1)

(6.2)

(6.3)

(6.4)

where Yj = 1 if group j is part of the optimal covering (notice that Yj E
{0,1} for j = 1, ... ,P in any optimal solution of (6.1) - (6.4)). Notice
that an equivalent set covering model would be obtained if we restricted
the set {1, ... , P} to the subset of maximal feasible groups, i.e. to those
feasible groups of jobs to which no more job can be added without destroying
feasibility.

The main drawback of the formulation (6.1) - (6.4) is the possibly huge
number of columns that it involves. Several authors report on efficient al­
gorithms for solving large set covering problems to optimality (e.g. Balas
and Ho (1980)), or for finding good heuristic solutions to such problems (e.g.
Nemhauser and Wolsey (1988) and Vasko and Wolf (1988)). Here,'however,
even generating the complete set covering formulation is a tedious task for
larger instances (see Section 6.5, Table 6.6). In spite ofthis, we shall see in
the next sections that it is possible to solve efficiently the LP-relaxation of
(6.1) - (6.4), and that the optimal value of this relaxation provides a very
strong lower bound on the optimal value of the set covering problem. The

112 Chapter 6

latter observation can only be seen as an empirical one, without theoretical
basis. Indeed, it is known that the LP-relaxation of arbitrary set covering
problems can be rather weak. On the other hand:

Theorem 6.1 Any instance of the set covering problem can be interpreted
as an instance of the job grouping problem, for some suitable choice of the
tool-job incidence matrix and of the capacity.

Proof:
Consider an arbitrary instance (SC) of the set covering problem, in the form
(6.1) - (6.4). We associate with this instance the P X N tool-job matrix A
defined by

j = 1, ... , P; i = 1, ... , N,

and the capacity C P - 1 (we assume without loss of generality that
Q = (qij) has no zero row, so that A has no column involving C + 1 ones).
We claim that the set covering formulation of the job grouping instance de­
scribed by A and C is exactly (SC). Indeed, a subset S of jobs (S ~ N) is
feasible for the instances described by (A, C) if and only if there exists a row
j of A (j E {1, ... , P}) such that aji = 0 for all i E S, or, equivalently, if
and only if there is a column j of (%) such that % = 1 for all i E S. But
this also means that the (maximal) columns of (qij) exactly correspond to
the maximal feasible sets of jobs. 0

Notice, however, that the value ofthe tool magazine capacity occurring in
this proof (namely, the total number of tools minus one) is not very realistic
from the viewpoint of the job grouping problem. From a computational
complexity viewpoint, Theorem 6.1 may be seen as a proof that the job
grouping problem is NP-hard (see also Tang and Denardo (1988b)). As
a matter of fact, we can prove that the problem is NP-hard even when
C = 3 (transformation from the problem edge partition into triangles; Holyer
(1981)) and that deciding whether there exists a partition of the jobs into
two feasible groups ~s NP-complete (this is equivalent to the block folding
problem discussed in Mohring (1990)).

6.2.2 Column generation

To find a lower bound for the set covering problem, we want to solve the
LP-relaxation of (6.1) - (6.4), i.e. the problem (6.1) - (6.3). We avoid the

Section 6.2 113

difficulty of explicitly generating all columns of this problem, by working
with only a subset of the columns and adding new columns as needed. This
approach was suggested by Gilmore and Gomory (1961) for solving cutting
stock problems. It can also be seen as an essential part of the Dantzig­
Wolfe decomposition (Dantzig and Wolfe, 1960). For a thorough discussion
of column generation we point to Chvatal (1983), and we only briefly recall
here the main features of the approach. At each iteration of the column
generation procedure, we solve the LP obtained by restricting (6.1) - (6.3)
to some subset T of columns, i.e. we solve a problem of the form:

minimize LVj (6.5)
jeT

subject to Lq··y· > 1 '3 3 - i=l, ... ,N, (6.6)
jeT

Vj 2: 0 JET, (6.7)

for some T ~ {1, ... , P} (we shall indicate in Section 6.4 how an initial set
T may be chosen). Let V* be an optimal solution to (6.5) - (6.7) and A* be
an optimal solution to the dual of (6.5) - (6.7). Consider also the dual of
(6.1) - (6.3), in the form

N

maximize LAi (6.8)
i=l
N

subject to Lq"A' < 1 '3 .- j = 1, ... ,P, (6.9)
i=l
Ai 2: 0 i=l, ... ,N. (6.10)

Observe that V* satisfies the constraints (6.2), (6.3) and that Ef=l vj =
E~l Ai (we suppose here that vj is extended to a vector of lRP by letting
vj = 0 for j ~ T). Hence, if A* satisfies all constraints (6.9), it follows
from the duality theorem of linear programming theory (see Chvatal (1983»
that V* is an optimal solution to the LP relaxation (6.1) - (6.3). In such a
case, the column generation procedure does not need to proceed further. On
the other hand, if A* does not satisfy (6.9), that is if there exists a column
j E {1, ... , P} such that E~l qijAi > 1, then the current set T can be
extended by this new index j, and a new iteration of the column generation
procedure can be started (alternatively, j can be seen as a column with
negative reduced cost for the relaxation (6.1) - (6.3». Classical LP theory
ensures again that this procedure can be made to converge in a finite number

114 Chapter 6

of iterations. In the next subsection, we discuss the question of finding a
violated constraint among (6.9).

6.2.3 The generation subproblem

The efficiency of column generation procedures is to a large extend deter­
mined by the complexity of the so-called generation subproblem, that is, in
our case of the subproblem:

N

given Ar, ... ,AN, is therej E {l, ... ,P} such that L%Ai > 1?
i=l

(6.11)

In many successful applications of column generation, the subproblem is
relatively easy, e.g. solvable in polynomial or pseudo-polynomial time (see
e.g. Gilmore and Gomory (1961), Desrosiers, Soumis and Desrochers (1984),
Ribeiro, Minoux and Penna (1989), ana Minoux (1987) for a general discus­
sion). Other applications exist, however, where the subproblem itself turns
out to be hard (see e.g. Kavvadias and Papadimitriou (1989), Jaumard,
Hansen and Poggi de Aragao (1991)). In order to determine the complexity
of our subproblem, notice first that (6.11) can be rephrased as:

given Ar, ... , AN, is there a feasible group S such that L Ai > 1? (6.12)
iES

Now, (6.12) could certainly be answered if we could find a feasible group
S which maximizes the expression EiES Ai over all feasible groups. We may
express this reformulation of the subproblem as follows. Introduce variables

Xi = 1
=0

for i = 1, ... , N, and

Zk = 1
=0

if job i is in group S
otherwise,

if tool k is required by some job in S,
otherwise,

for k = 1, ... , M. The maximization version of (6.12) becorn,es (Hirabayashi
et al., 1984):

N

maximize L Ai Xi

i=l·

subject to akixi::; Zk i= 1, ... ,Nik= 1, ... ,M,

(6.13)

(6.14)

Section 6.2

M

~Zk~C
k=l

XiE{O,l}

ZkE{O,l}

i= 1, ... ,N,

k= 1, ... ,M,

115

(6.15)

(6.16)

(6.17)

This problem is known to be NP-hard, even when Ai = ... = AN = 1
(Gallo, Hammer and Simeone, 1980). Notice that, when Ai = ... = AN = 1,
(6.13) -(6.17) boils down to determining a feasible group that contains as
many jobs as possible; this subproblem has been considered by Hwang (1986)
and Hwang and Shogan (1989). Problem (6.13) - (6.17) (and generalizations
thereof) has been investigated by a number of authors. Hirabayashi et al.
(1984) developed a branch-and-bound procedure for it. To obtain an up­
per bound, they solve the linear relaxation of the problem by a specialized
primal-dual algorithm. Mamer and Shogan (1987) use a Lagrangian method
with the help of subgradient optimization to solve the relaxation of (6.13)
- (6.17). This approach has been developed further by Gallo and Simeone
(1988) (see also Chaillou, Hansen and Mahieu (1989)). Dietrich, Lee and Lee
(1991) present a heuristic procedure for the problem (see Section 6.4). They
also use the LP-relaxation for obtaining an upper bound, and present some
valid inequalities to improve this bound and to fasten up the branch-and­
bound search. From a practical viewpoint, (6.13) - (6.17) remains a hard
problem to solve. In particular, experimental results of Dietrich et al. (1991)
show a large gap between the LP-relaxation value and the optimal value of
(6.13) - (6.17). Our own experience also indicates that the LP-relaxation is
generally weak. Especially in the case where optimality in the column gen­
eration procedure is nearly reached (Le. where the generation subproblem
has an optimal value close to 1), the gap between LP- and IP-formulation
is considerable (often larger than 2). This results in large search trees when
attacking (6.13) - (6.17) by branch-and-bound. Another drawback of solving
(6.13) - (6.17) to optimality is that this only allows one new column of the
set covering problem to be generated in each iteration (Le., we find only
one violated inequality of type (6.9)). This may lead to a large number of
iterations of the column generation procedure. Because we are using the LP
package LINDO in our experiments, and this package does not allow to add
columns to a model in a dynamic fashion, one new LP problem has to be
reoptimized from scratch in each such iteration, a rather costly operation. In
view of all these considerations, we decided to use a complete enumeration
procedure for the solution of the generation subproblem. Thus, in terms of

116 Chapter 6

the formulation (6.12), we are not only interested in finding one group S for
which Eies ~t > 1, but in finding all (or many) such groups. All the cor­
responding columns may enter the set covering formulation, and this tends
to reduce the number of iterations of the column generation procedure. The
enumeration procedure works as follows. First, we sort the dual variables
by nonincreasing values, say e.g. ~i ~ ~2 ~ ... ~ ~N' Then we grow a
binary tree, by successively attempting to include or not to include each of
the jobs 1,2, ... , N in a feasible group. Early on in the column generation
procedure, the ~t's are bad estimates of the optimal dual variables, and
hence the enumeration procedure produces very quickly a large number of
feasible groups S with Eies ~t > 1. Therefore, the total number of columns
that is generated in one iteration is limited to a fixed arbitrary number (100
in our implementation). For the instance sizes which we considered in our
experiments, the enumeration procedure always remained manageable (see
Section 6.5).

6.2.4 Computation of lower bounds via column generation

The column generation procedure can be summarized as follows (see Section
6.4 for details about its implementation):

Initialization: Generate an initial set T of columns of the set covering
formulation (6.1) - (6.3).

LP Solution: Solve the LP (6.5)-(6.7); let y* and ~* be optimal primal and
dual solutions of (6.5)-(6.7).

Column Generation: Generate new columns by solving the generation
subproblem: that is, find indices j E {1, ... , P} such that Ef:l %~t >
1, and let T ~ T U {j} for each such j. H no such new columns can be
found then STOP: y* is an optimal solution of (6.1) - (6.3); otherwise
return to LP Solution.

When the column generation procedure stops we have an optimal solution y*
for the LP relaxation (6.1) - (6.3). Rounding up the solution value 'EjeTyj
to the next integer gives a lower bound for the job grouping problem. We
will refer to the bound rEjeT yjl as LBcG.

It is also possible to compute weaker lower bounds on the optimal value
of the job grouping problem before the column generation procedure termi-

Section 6.2 117

nates. To see this, let Z denote the optimal value of the generation subprob­
lem (6.13) - (6.17), as computed for instance in some iteration ofthe column
generation step (for the results below to be valid, the Ai may actually be
arbitrary numbers in [0,1], and do not necessarily need to arise from the LP
solution step). Farley (1990) observed the following:

Theorem 6.2 If Z ~ 1, then Ef:l Ai /Z is a lower bound on the optimal
value of {6.1} - {6.3}.

Proof:
By definition, Z is the maximum value of Ef:l qijAi over j (see (6.11)).
Thus, A* /Z is a feasible solution for the dual (6.8) - (6.10) of (6.1) - (6.3),
and it follows that Ef:l Ai/Z is a valid lower bound for (6.1) - (6.3). 0

Another lower bound can also be derived_as follows:

Theorem 6.3 If Z ~ 1, then Ef:l Ai + N· (1- Z) is a lower bound on the
optimal value of {6.1} - {6.3}.

Proof:
Let y* be an optimal solution of (6.1) - (6.3). Notice that Ef:l %yj >
1 (i = 1, ... , N) and Ef=l yj ~ N. Hence,

Ef=l yj ~ Ef=l yj + Ef:l (1 - Ef=l %yj)Ai
= Ef:l Ai + Ef=l(l- Ef:l %Ai)yj
~ Ef:l Ai + (1 - Z) Ef=l yj
~ Ef:l Ai + N(l - Z). 0

Theorem 6.4 If Z > 1, then Ef:l Ai /Z > Ef:l Ai + N . (1- Z).

Proof:
Trivial. o

Theorem 6.4 shows that the bound given in Theorem 6.3 is strictly better
than the bound in Theorem 6.2 whenever Z > 1. When Z = 1, both bounds
coincide with the optimal value of (6.1) - (6.3). Thus, we will only consider
from now on the stronger bound Ef:l Ai / Z. More precisely, we define

LBFarley = 1Lf:1 Ai / Z]
LBFarley is obviously a valid lower bound on the optimal value of the job
grouping problem. As the column generation proceeds, Z approaches 1 and
LBFarley approaches the lower bound LBcG (see Farley (1990)).

118 Chapter 6

6.2.5 Lagrangian relaxation

In this subsection, we present an alternative integer programming model for
the job grouping problem and we discuss the quality of the bounds that it
yields, either by continuous relaxation or by Lagrangian relaxation. In this
model, a variable Xij is used to denote the assignment of job i to one of N
groups, indexed by j (i = 1, ... , N j j = 1, ... , N) (one may best think of the
N groups as being initially empty). We use the following notation

Xij = 1
=0

Yj = 1
=0

Zkj = 1
=0

if job i is assigned to group j,
otherwise,
if groupj is non-empty,

otherwise,
if tool k is used for the production of group j,

otherwise,

for i = 1, ... ,N,j = 1, ... ,N,k = 1, ... ,M.
The model is now:

N

minimize L Yj
j=1

N

subjeCt to L Xij = 1
j=1

i=l, ... ,N,

(6.18)

(6.19)

akiXij ~ Zkj
M

i= 1, ... ,Njj= 1, ... ,Njk= 1, ... ,M{6.20)

LZkj ~ CYj
k=1

Yj E {0,1}
Xij E {0,1}
Zkj E {0,1}

j=l, ... ,N,

j=l, ... ,N,

i = 1, .. . ,Njj = 1, ... ,N,

j = 1, ... ,Njk = 1, ... ,M.

(6.21)

(6.22)

(6.23)

(6.24)

The objective function (6.18) minimizes the number of non empty groups.
Restrictions (6.19) make sure that each job is assigned to some group. Re­
strictions (6.20) assure that the tools needed for a job are available for the
produCtion of the group to which the job is assigned. Restrictions (6.21)
describe the tool magazine capacity constraints for each group. The con­
tinuous relaxation of this model yields a weak lower bound on the opti­
mal value. Indeed, the solution Xij = l/N,Zkj = l/N and Yj = M/CN,
(i = 1, ... , Njj = 1, ... ,Nj k = 1, .. . ,M) is feasible, with an objective

Section 6.2 119

function value of MIG (which is trivially a valid lower bound; see Section
6.2.6). Lagrangian relaxation could be used to compute a stronger bound.
For instance, if we dualize restrictions (6.19) with multipliers Ai, ... , AN' we
obtain a lower bound LBlr(A) by solving:

N N N
LBLR(A) = minimize LYj + L Ai(l- LXij) (6.25)

j=l i=l j=l

subject to (6.20) - (6.24).

Up to deletion of an additive constant, Ef:l Ai, this problem can be
equivalently rewritten as

N N
minimize L(Yj - L AiXij) (6.26)

j=l i=l

subject to (6.20) - (6.24).

Now problem (6.26), (6.20) - (6.24) can be decomposed into N identical
subproblems, one for each value of j = 1, ... , N. Deleting the index j, the
generic form of each subproblem is:

N

minimize Y - L AiXi
i=l

subject to akixi:::; Zk

M

LZk:::; G·y
k=l

yE{O,l}

Xi E {0,1}

zk E {0,1}

i = 1, .. . ,N;k = 1, .. . ,M,

i = 1, .. . ,N,
k = 1, ... ,M.

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

If Y = 0 in the optimal solution of (6.27) - (6.32), then also Zk = 0
for k = 1, .. . ,M,Xi = 0 for i = 1, .. . ,N, and the optimal value is O. If
Y = 1 at optimality, then minimizing the objective function (6.27) becomes
equivalent to maximizip.g Ef:l AiXi. Therefore, we conclude tha~ the sub­
problem arising via this Lagrangian relaxation is essentially equivalent to
the subproblem (6.13)- (6.17) arising via column generation. Denote by Z,
as usual, the maximum of Ef:l AiXi under the constraints (6.28) - (6.32).

120 Chapter 6

The previous discussion shows that the optimal value of (6.27) - (6.32) is
equal to min(O, 1- Z). This in turn implies that the lower bounds LBLR(A),
corp.puted from (6.25), (6.20) - (6.24), is equal to L:f:l Ai + N· min (0,1- Z).
As we already know, this bound is weaker than LBFarley for all A such that
Z > 1 (see Theorem 6.4), and coincides with the optimal value of (6.1) - (6.3)
when Z ::; 1. Thus, the Lagrangian "relaxation approach described here does
not yield better bounds than the column generation procedure. Observe
that a "best possible" choice of the multipliers At, ... , AN, i.e. one leading
to the maximum value of LBLR(A), could be searched for by a subgradient
optimization procedure (Fisher, 1981) or by a multiplier adjustment proce­
dure (Fisher, Jaikumar and Van Wassenhove, 1986). The column generation
procedure can also be seen as using an LP-solver to adjust the values of the
multipliers. The Lagrangian relaxation approach will not be considered any
further in this work.

6.2.6 Other lower bounds

We discuss in this subsection some more lower bounds for the job grouping
problem. By duality, the optimal value of the problem (6.8) - (6.10) is equal
to the optimal value of (6.1) - (6.3), i.e. (up to rounding) LBcG. Thus, the
optimal value of (6.8) - (6.10) under the additional restriction

Ai E {0,1} i = 1, ... ,N, (6.33)

is a lower bound on LBcGi we denote it by LBsp. This lower bound can
be interpreted as follows. Call two jobs compatible if they form a feasible
group and incompatible otherwise. Then, LBsp is nothing but the maximum
number of pairwise incompatible jobs. The problem (6.8) - (6.10), (6.33) is a
so-called set packing problem. Conversely, a construction similar to the one
used for Theorem 6.1 shows that any instance of the set packing problem
can arise in that way. It follows from this observation that computing LBsp
is NP-hard (see e.g. Nemhauser and Wolsey (1988) p. 117).

Tang and Denardo (1988b) propose a lower bound which is also based on
the concept of compatibility of jobs. In their so-called sweeping procedure,
they sequentially create a number of groups as follows. In each step of
the procedure, they first select a job (seed) which is compatible with the
fewest number of other (not yet selected) jobs (in case of a tie, the job for
which the set of compatible jobs requires the smallest number of tools is
selected). Next, the seed, along with all jobs which are compatible with it,
are selected to form one group. The procedure is repeated until all jobs have

Section 6.3 121

been selected. The number of groups so created, say L (i.e., the number of
steps of the sweeping procedure) is a valid lower bound for the job grouping
problem. In fact, L can best be seen as a lower bound on LBsp, since the
seeds are mutually incompatible, and hence define a feasible solution of the
set packing problem (6.8) -(6.10), (6.33). From this viewpoint, the sweeping
procedure is a greedy heuristic applied to (6.8) -(6.10), (6.33).

Tang and Denardo (1988b) also point to the lower bound rM/Cl. Com­
bining this bound with L yields the lower bound LBsw = max {fM/Cl,L}
(Tang and Denardo, 1988b).

The lower bound LBsw can be further improved by "incorporating" the
lower bound rM/Cl, in the sweeping procedure. More precisely, a lower
bound for the job grouping problem can be calculated in each step of the
sweeping procedure by summing the number of already created groups by
the sweeping procedure and the lower bound n UieI Til/Cl , where I is
the set of "not yet selected" jobs, and Ti is the set of tools needed by job
i. This procedure generates a sequence of valid lower bounds, the first of
which is equal to rM/Cl, and the last of which is equal to L. We refer
to this procedure as the "modified sweeping procedure". It yields a new
lower bound, equal to the maximum of the bounds in the sequence, which
we denote by LBMSW.

We have considered a number oflower bounds for the job grouping prob­
lem. Summarizing we have:

• LBFarley ~ LBcG (see Section 6.2.4)

• LBLR ~ LBFarley (see Section 6.2.5)

• LBsp ~ LBcG (Duality)

• LBsw ~ LBMSW (see this section)

In our implementation we use the bound LBMSW for its computational
simplicity and the lower bounds LBFarley and LBcG if LBMSW is not strong
enough.

6.3 Upper bounds

In this section a number of heuristic methods will be described to compute
good solutions for the job grouping problem and hence upper bounds on its

122 Chapter 6

optimal value. First, we will describe a number of procedures that sequen­
tially build groups. The second part will discuss procedures based on solving
the set covering formulation.

6.S.1 Sequential heuristics for grouping

Sequential heuristic procedures use a two-step approach for building each
group. In the first step, ajob is picked to be used as a seed. Unless explained
otherwise, we always pick a job that requires the highest number of tools.
Then a selection rule is used to add jobs to the group until the tool magazine
capacity constraint prohibits the addition of any other job to this group. The
two-step procedure is repeated until all jobs are assigned to some group. For
selecting the next job to be assigned to a group (in step 2) a number of
different rules have been considered. We now describe them. For a group S
and a job i ~ S, let
ti = number of tools required by job ij
bi = number of tools required both by job i and by some job already in S.

1. MIMU rule
Tang and Denardo (1988b) select the job that has the largest number
of tools in common with the jobs already in the group. In case of a
tie, the job which requires the smallest number of additional tools is
selected. The procedure is called Maximal Intersection Minimal Union.
(Maximize bi j in case of a tie minimize ti)

2. MI rule
This is the rule obtained if only the first part of the MIMU rule is used,
and ties are arbitrarily broken. (Maximize bi)

3. MU rule
It is also possible to select jobs according only to the Minimal Union
criterion: select the job that requires a minimum number of additional
tools. (Minimize (ti - bi))

4. Whitney and Gaul rule
Whitney and Gaul (1985) favour jobs that bring with, them a large
number of versatile tools. This idea is operationalized by selecting
a job for which the ratio (bi + l)/(ti + 1) is maximal. (Maximize
(bi + l)/(ti + 1))

Section 6.3 123

5. Rajaflopalan rule
Rajagopalan (1985) proposes a number of procedures based on the
First Fit Decreasing rule for bin-packing. Among these, we consider
one that first assigns weights to the tools and then selects the job that
requires the most 'expensive' tools. More precisely, each tool k receives
a weight ak equal to the number of jobs that require tool k among the
jobs that still have to be assigned to a group. Then, the priority of job
i is calculated by summing the weights ak of the tools that must be
added to the tool magazine in case job i is assigned to the group. The
job with the largest priority is selected first. For this rule, the first job
in each group (seed) is also selected according to the same criterion.

6. Modified Rajagopalan rule
The procedure of Rajagopalan (1985) can be changed in the following
way: the weight ak for each tool k is defined as the number of jobs
that require tool k among the jobs already selected in the group. The
priority of a job is the sum of the weights of the tools that are needed
for that job. The job with the highest priority is selected.

7. Marginal gain rule
The addition of job i to a group usually requires that extra tools be
loaded in the tool magazine. This new tool configuration may in turn
allow the execution of other, not yet selected, jobs; denote by Pi the
number of such jobs. This rule selects a job i that maximizes Pi (a
similar idea is used by Dietrich et al. (1991)).

6.3.2 Set covering heuristics

In the course of the column generation procedure, several set covering sub­
problems of type (6.5) - (6.7) are formulated. Each such subproblem can
be viewed as an approximation of the complete formulation (6.1) - (6.4).
In particular, each feasible solution ofthe system (6.6) - (6.7) is a feasible
solution of (6.2) - (6.3), and hence each 0-1 solution of (6.6) - (6.7) defines
a heuristic solution to the job grouping problem. We have used this obser­
vation in various ways. First, the solution of (6.5) - (6.7) found by LINDO
during the column generation procedure sometimes happens to be a 0-1 so­
lution which improves upon the current best solution. Such solutions can be
detected with very little additional computational effort and may avoid the
use of other upper bounding procedures.

124 Chapter 6

It is also possible to systematically generate "good" 0-1 solutions of the
subproblem (6.5) - (6.7). This can be done using either a heuristic procedure
or an exact algorithm. We have considered both possibilities. As a heuristic,
we used the well-known greedy procedure (Nemhauser and Wolsey, 1988 p.
466); this constructive heuristic recursively selects as next group (column)
one which contains a maximum number of jobs, until all jobs are included
in some group (i.e. are covered by some column). Alternatively, subproblem
(6.5) - (6.7) could also be solved to optimality in 0-1 variables, by relying
on the capability of LINDO to handle integer programming problems. In
view of the computational burden involved in this approach, we chose to
turn it into a heuristic by requiring only a small number of variables to
be integer. We only used this heuristic when the column generation proce­
dure ended without an optimal solution. We will explain in Section 6.4 the
implementational details of this approach.

6.4 Implementation

In Sections 6.2 and 6.3, an overview has been given of the methods that can
be used for obtaining lower bounds and upper bounds for the job grouping
problem. Also, the general principle of the column generation procedure and
the difficulty of solving the generation problem have been discussed. Now,
we focus on implementational issues. The procedure that we implemented
consists of four main steps. We first briefly sketch the whole procedure before
commenting on each individual step.

Step I: Use the heuristics of Section 6.3.1. to produce a first upper bound.
Compute the simple lower bounds LBsw and LBMSW. IT optimality
is achieved then STOP. Otherwise construct an initial set covering for­
mulation using the groups that have been generated using the heuristic
procedures.

Step II: Use the greedy heuristic to solve the initial set covering formula­
tion. IT optimality is achieved then STOP. Otherwise use a heuristic
to add a number of columns to the initial formulation. Solve again
the resulting set covering formulation using the greedy procedure. IT
optimality is achieved then STOP.

Step III: Solve the LP-relaxation of the current formulation. Check whether
the primal solution is integral and whether its value improves the cur­
rent upper bound. Use the dual variables to formulate the generation

Section 6.4 125

subproblem and generate new columns with negative reduced cost.
Calculate LBFarley. IT optimality is achieved then STOP. IT no columns
with negative reduced cost have been found, then continue with Step
IV. Otherwise, update the set covering formulation and repeat Step
III.

Step IV: Use the last set covering formulation for finding an improved
heuristic solution.

In Step I an upper bound is obtained by using the 7 heuristics of Section
6.3.1 and retaining the best solution. A lower bound is obtained by calcu­
lating the bounds LBsw and LBMSW of Section 6.2.6. IT the lower bound
equals the upper bound, the procedure stops and steps II-IV are not neces­
sary. Otherwise the groups generated by the heuristics are used to generate
an initial set covering formulation of the problem.

Step II aims at improving the initial formulation and the current up­
per bound before starting the column generation procedure. The first set
covering formulation is solved using the greedy heuristic (Section 6.3.2.).
IT optimality is not established yet, then a heuristic based on the work of
Dietrich et al. (1991) is used for generating additional columns as follows.
Each job is considered as a seed, around which a group is built by iteratively
adding that job i for which the ratio Pi/(ti - bi) is maximal, where (ti - bi)
is the number of additional tools needed for job i and Pi is the number of
additional jobs that may be executed with the new set of tools in the tool
magazine (see Section 6.3.1). In this way N (number of jobs) new groups (Le.
columns) are constructed and used to extend the set covering formulation.
This new formulation is solved again using the greedy heuristic. Notice that
the second part of Step II is time consuming (see Section 6.5.2); this is the
main reason why we first apply the greedy heuristic to the initial formulation
rather than directly extending this formulation.

The third step is critical to the procedure. First, the LP-relaxation of
the current set covering formulation is solved using the linear programming
package LINDO. The primal and dual solutions are stored, and the primal
solution is checked for integrality. IT it is integral and involves fewer groups
than the current best solution, then its value is stored as a new upper bound.
The dual variables are then used in the generation subproblem. This problem
is solved using the enumeration strategy described in Section 6.2 .. 3. In the
first steps of the column generation procedure only a limited enumeration
takes place because of (the self-imposed) maximum of 100 columns that may
be generated by the enumeration procedure. When a complete enumeration

126 Chapter 6

is performed, the optimal value Z of the generation subproblem is used for
computing the bound LBFarley. H this lower bound is equal to the upper
bound the procedure stops. H no new column has been generated (Le. Z = 1
and LBFarley = LBcG), then the column generation subroutine terminates,
and we continue with step IV. Otherwise, the new columns are added to
the set covering formulation. Also, to limit the size of the formulation, all
columns with a small reduced cost are eliminated. More precisely, columns
for which z:f:1 %Ai < 1 - a are removed from the formulation, where a is
an arbitrary chosen parameter (a = 0.25 in our implementation). This may
cause the procedure to cycle, as columns are removed from the formulation,
then enter it again, etc. In our tests (with a = 0.25) cycling occurred for
4 instances out of 550, but could be avoided when the procedure was run
anew with a set to a larger value.

When there is still a gap between the upper and lower bound generated
in Steps I-III, more work has to be done. A branch-and- bound procedure
could be used to establish optimality. However, it is also possible to use the
last set covering formulation to improve the upper bound, as we explained
in Section 6.3.2. In our implementation, we first solve this formulation by
the greedy heuristic. H this is not effective, we solve a slightly modified
set covering formulation with LINDO, requiring only a limited number of
variables to take 0-1 values. More precisely, the T variables which assume
the largest value in the continuous solution of the set covering formulation
(where columns for which z:f:1 %Ai < 1 - f3 are removed to limit the size
of the formulation, with f3 = 0.10), extended by the additional constraint
z:f=l Yj 2: LBcG, are forced to be integer. The parameter T is taken equal
to LBcG + 5 if the number of columns is smaller than 50 (resp. LBcG + 15
if the number of columns is between 50 and 150, and LIJcG + 25 otherwise).
Because of the small number of integer variables, the resulting mixed 0-1
problem is easily solved by branch-and-bound.

Notice that the choices made for the various parameters of the procedure
(maximum number of columns generated in each iteration, a, T, f3) influence
the sequence of LP subproblems generated, and hence also the heuristic solu­
tions produced in Steps III and IV. These choices may sometimes determine
whether an optimal solution is found or not by the procedure.

At the end of the procedure, a lower bound and an upper bound have
been obtained. In the next section, we discuss our .computational experi­
ments with this procedure, and we show that both bounds often coincide
(and hence, are optimal).

Section 6.5 127

6.5 Computational experiments

6.5.1 Generation of problem instances

We generated three sets of random instances. The first set contains 120
instances, the second set 400 instances and the third set 30 instances. Each
instance falls into an instance type, characterized by the size (M, N) of the
tool-job matrix and the value C of the capacity. Accordingly, we denote the
type of an instance by a triple (M, N, C). The first set of instances contains
12 instance types obtained by combining each of the matrix sizes (20,15),
(40,30) or (60,40) with four different capacity values Cl,C2 ,C3 ,C4 , as indi­
cated in Table 6.1. For each size (M, N), we also define a pair (Min,Max)
of parameters with the following interpretation:
- Min = lower bound on the number of tools per job,
- Max = upper bound on the number of tools per job.

The second set of instances was created according to rules suggested by
Tang and Denardo (1988b) in order to allow some comparison with the re­
sults of these authors. It involves four instance types, defined by the values
of the parameters displayed in Table 6.2.

Problem size Ct C2 C3 C4 Min Max
MxN
20 X 15 6 8 10 12 2 6
40 X 30 15 17 20 25 5 15
60 X 40 20 22 25 30 7 20

Table 6.1 Parameters first set of instances

Problem size Ct Min Max
MxN
10 X 10 4 1 3
15 X 20 8 1 7
20 X 30 10 1 9
25 X 30 10 1 9

Table 6.2 Parameters second set of instances

For each problem size (M, N) in the first (resp. second) set, 10 (resp. 100)
random matrices A were generated. For each j = 1, ... , N, the j-th column

128 Chapter 6

of A was generated as follows. First, an integer tj was drawn from the uni­
form distribution over [Min,Max]: this number denotes the number of tools
needed for job j, i.e. the number of l's in the j-th column of A. Next, a
set Tj of tj distinct integers were drawn from the uniform distribution over
[l,M]: these integers denote the tools required by job j, i.e. akj = 1 if and
only if k E Tj. Finally, we checked whether Tj ~ Ti or Ti ~ Tj held for
any i < j. IT any of these inclusions was found to hold, then the previous
choice of Tj was cancelled, and a new set Tj was generated (as observed by
Tang and Denardo (1988b) the job grouping problem trivially simplifies by
removal of the columns included in other columns of the tool-job matrix). A
problem instance of type (M, N, C) is now obtained by combining an M X N
tool-job matrix A with one of the corresponding capacities displayed in Ta­
bles 6.1 and 6.2. The random instances described above are similar to those
generated e.g. by Rajagopalan (1985), Tang and Denardo (1988b), Hwang
and Shogan (1989) and Kuhn (1990). It turns out that, for these instances,
the feasible groups of jobs are usually rather small (typically, 2 to 5 jobs).
This can be explained by the fact that the tool requirements of the jobs
are completely independent of each other, and that large subsets of jobs
are therefore uiilikely to be compatible. This lack of interdependence be­
tween jobs is, however, unlikely to reflect the structure of "realistic" tool-job
matrices. Indeed, real-world instances are more likely to exhibit subsets of
"similar" jobs, characterized by "similar" tool requirements. Our third set
of random instances results from an attempt to capture this type of features.
The parameters for this set are displayed in Table 6.3.

Problem size C Min Max Minjob Maxjob
MxN
40 X 40 20 7 10 5 8
50 X 50 25 8 12 6 10
60 X 60 30 10 15 8 12

Table 6.3 Parameters third set of instances

Ten instances of each type (M, N, C) were generated as follows. First, a
number Nl is drawn uniformly between Minjob and Maxjob, and a subset
of tools Ml of size exactly C is randomly chosen. Then, we create Nl
"similar" jobs, by making sure that these jobs use only the tools in Ml
(and hence, form a feasible group). These jobs are generated as explained

Section 6.5 129

before for the first and the second sets of instances (except that they are
restricted to the tools in MI). When Nl jobs have been defined, then the
procedure is iterated to produce N2 , N3 , ••• additional jobs. This process
stops after k iterations, when almost all columns of the incidence matrix
have been generated (specifically, when L:f=l Ni ~ N -Maxjob). Then, the
last columns are filled independently of each other, as for the first two sets
of instances.

This completes the description of our problem instances. It will be ob­
served in the next· section that the degree of difficulty of these instances is
somewhat related to the relative size of the capacity with respect to the
maximum number of tools used by the jobs (viz. the parameter Max). We
call sparse those problem instances for which Max / C is small, and dense
those for which the ratio is close to 1. Notice, in particular, that all instances
of type (M, N, C l) are dense, and that the instances of type (M, N, C4), as
well as the instances in the third set, are rather sparse.

6.5.2 Computational results

The column generation procedure has been implemented as described in Sec­
tion 6.4, using Turbo Pascal, and tested on the instances described in Section
6.5.1. The experiments were run on an AT personal computer with 16 MHz
80386sx processor and 80387 mathematical coprocessor. No systematic at­
tempts have been made to optimize the running times of the codes, because
our primary goal was to establish the quality of the bounds computed.

Before going into detailed comments, we mention what we see as our two
most interesting results. First, for all instances tested, the gap between the
LP -relaxation of the set covering formulation and the value of the optimal
solution was smaller than 1. In other words the column generation procedure
always provided a lower bound LBcG equal to the optimal value of the job
grouping problem (note, however, that this empirical observation is definitely
not a theorem: indeed, it follows from Theorem 6.1 that LBcG can, for
some possibly contrived examples, be arbitrarily far from the optimal value).
Second, using the column generation procedure described in Section 6.4.1
we were able to solve 541 of our 550 instances to optimality. Moreover, all
instances have been solved to optimality by variants of the same procedure,
characterized by different choices of the parameters (number of new: columns
generated in each iteration, value of the reduced costs under which columns
are deleted, etc.).

130 Chapter 6

Lowerbounds
Instance type

OPT LBsw LBMSW LBcG
MxN C 1 2 3 4

20 x)5 6 9.3 -0.5 '(5) -0.4 (6) 0(10)
8 5.7 -1.2 (1) -1.2 (1) 0(10)
10 3.9 -1.9 (0) -1.8 (0) 0(10)
12 2.9 -0.9 (1) -0.9 (1) 0(10)

40 X 30 15 19.0 -0.7 (5) -0.3 (7) 0(10)
17 15.5 -0.7 (5) -0.7 (5) . 0 (10)
20 10.9 -2.1 (0) -2.0 (1) 0(10)
25 6.7 -4:7 (0) -4.3 (0) 0(10)

60 x 40 20 25.9 -0.8 (5) -0.6 (7) 0(10)
22 22.3 -8.6 (2) -8.6 (2) 0(10)
25 17.0 -9.6 (0) -9.6 (0) 0(10)
30 12.0 -7.0 (0) -6.9 (0) 0(10)

10 x 10 4 5.1 -0.7 (38) -0.5 (54) 0(100)
15 x 20 8 9.3 -0.7 (45) -0.5 (57) 0(100)
25 x 30 10 15.0 -0.7 (47) -0.5 (62) 0(100)
20 x 30 10 14.0 -0.8 (39) -0;6 (45) 0(100)
40 x 40 20 6.2 -4.2 (0) -4.2 (0) 0(10)
50 x 50 25 6.3 -4.3 (0) -4.3 (0) 0(10)
60 x 60 30 7.7 -5.7 (0) -5.7 (0) 0(10)

Table 6.4 Quality of lower bounds

Section 6.5 131

Upper bounds

Instance type OPT MIMU MI MU Whit. Rajago- Mod. Marg. Best
+ Gaul palan Raj. gain

MxN I C 1 2 3 4 5 6 7 8 9

20 X 15 6 9.3 0.3 ll~) 0.3 (~~) 0.4 (9~ 0.3l~~) 1.1 ~3~ 0.3 ~10~ 0.5 ~8~ 0.3 ~7~
8 5.7 0.4 (7) 0.2 (9) 0.7 (4) 0.5 (6) 0.8 (4) 0.1 (10) 0.6 (5) 0.1 (9)
10 3.9 0.4 (7) 0.4 (7) 0.6 (5) 0.4 (7) 1.0 (2) 0.4 (7) 0.6 (5) 0.1 (9)
12 2.9 0.2 (9) 0.3 (8) 0.6 (5) 0.3 (8) 0.9 (3) 0.3 (8) 0.5 (6) 0.1 (9)

40 X 30 15 19.0 0.3 (7) 0.0 (10) 0.6 (5) 0.2 (8) 0.8 (3) 0.0 (10) 0.3 (7) 0.0 (10)
17 15.5 0.3 (8) 0.2 (9) 0.6 (5) 0.2 (9) 1.1 (1) 0.1 (10) 0.6 (5) 0.1 (9)
20 10.9 0.9 (7) 0.6 (10) 1.6 (2) 1.0 (6) 2.4 (0) 0.6 (10) 1.4 (3) 0.6 (4)
25 6.7 0.9 (10) 0.9 (10) 1.9 (0) 1.0 (9) 3.0 (0) 0.9 (10) 2.0 (1) 0.9 (1)

60 X 40 20 25.9 0.5 (8) 0.3 (10! 0.6 ~7! 0.4 (9) 0.9 ~4! 0.3 ~10! 0.6 (7) 0.3F!
22 22.3 0.6 (5) 0.1 (10) 1.0 (3) 0.5 (6) 1.4 (0) 0.1 (10) 0.7 (5) 0.1 (9)
25 17.0 1.5 (3) 0.8 (9) 2.5 (0) 1.6 (1) 2.3 (0) 0.7 (10) 1.9 (0) 0.7 (3)
30 12.0 1.3 (6) 0.9 (10) 2.8 (0) 1.3 (6) 3.9 (0) 1.0 (9) 3.2 (0) 0.9 (1)

10 X 10 4 5.1 0.2 (95) 0.2 (95) 0.5 (62) 0.2 (95) 0.6 (58) 0.2 (95) 0.5 (65) 0.1 (87)
15 X 20 8 9.3 0.4 (88) 0.4 (90) 0.7 (65) 0.5 (83) 1.2 (31) 0.4 (89) 0.8 (59) 0.3 (68)
25 X 30 10 15.0 0.5 (79) 0.4 (90) 0.9 (43) 0.5 (73) 1.5 (11) 0.4 (90) 0.8 (50) 0.3 (75)

0.4 (92) 1.3 (26) 0.6 (73) 1.7 (15) 0.4 (91) 1.1 (33) 0.3 (66) 20 X 30 10 14.0 0.5 (81)

40 X 40 20 6.2 1.0 (6) 0.8 (8) 0.8 (8) 1.0 (6) 5.9 (0) 1.1 (6) 1.4 (3)
50 X 50 25 6.3 1.5 (2) 1.1 (6) 1.3 (6) 0.9(6) 10.3 (0) 1.~ (4) 3.9 (1)
60 X 60 30 7.7 1.5 (6) 0.7 (9) 1.5 (4) 1.6 (4) 12.2 (0) 1.1 (6) 3.6 (3)

Table 6.5 Quality of upper bounds

The quality of the lower bounds LBsw, LBMSW, LBcG is depicted
in Table 6.4. Table 6.5 compares the solutions obtained by the sequential
heuristics in step I of the procedure. The column labelled OPT in both tables
gives the average number of groups in the optimal solution, per instance type.
The next three columns in Table 6.4 bear on the lower bounds; columns 2-8 in
Table 6.5 correspond to the upper bounds delivered by the seven sequential
heuristics, and the last column (labelled Best) reports on the upper bound
obtained by retaining the smallest of the previous seven ones. Each entry
in columns 2-4 in Table 6.4 and 2-9 in Table 6.5 has the format t5(a). In a
row labelled (M,N,C) and a column labelled X, 15 is the average difference
between the lower (or upper) bound X and the optimal value of the instance,
over all instances of type (M,N,C); that is, 15 = X- OPT, where X is the
average of the lower (or upper) bound X. In columns 2-8 in Table 6.5 (that
is, for the sequential heuristics), the entry a denotes the number of instances
of type (M, N, C) for which the upper bound X is best among the sequential
heuristics. In the columns 2-4 in Table 6.4 and in column 9 in Table 6.5, a

0.6 (4)
0.5 (5)
0.6 (5)

132 Chapter 6

is the number of instances for which X is equal to the optimal value of the
instance.

As mentioned before, LBcG is equal to the optimal value for all instances
tested. The lower bounds LBsw and LBMSW are often not sufficiently sharp
to prove optimality. For only 35 % of the instances (especially smaller, denser
instances), LBsw gives an optimal lower bound. For an additional 10 % of
the instances, LBMSW is optimal. But even LBMSW is only optimal for
2 out of the 90 sparse instances of type (M, N, C3) or (M, N, C4). This
bad behaviour of LBsw and LBMSW on sparse instances is intuitively easy
to understand. Indeed, as capacity increases, each pair of jobs becomes
more and more likely to be compatible; hence, the sweeping procedure tends
to become useless, as only small sets of pairwise incompatible jobs can be
produced (notice that the same conclusion applies for the set packing lower
bound LBsp - see Section 6.3.2). Tang and Denardo (1988b) recognized this
weakness of the sweeping procedure, and proposed the lower bound M / C
with the hope to partially palliate it. But the latter bound is usually weak
too.

As far as the sequential heuristics go, it appears from columns 2 to 8 in
Table 6.5 that the MIMU, MI, Whitney and Gaul and Modified Rajagopalan
rules outperform the other rules. In particular, the MI rule performs ex­
tremely well for all instance types, whereas the Modified Rajagopalan rule is
especially well suited for the first two sets of instances, but is slightly weaker
for the third set. In some instances, the Whitney and Gaul or the MIMU
rule provide an optimal solution where the other procedures leave a gap.
The MU rule is not very effective for the first two sets of instances (which
may help explain why MI performs better than MIMU), but is better for
the third set (it is intuitively easy to understand that, for the instances in
the latter set, the Minimal Union rule tends to preserve the feasible groups
which have been artificially built into the instance). The performance of the
Marginal gain and the Rajagopalan rule is very weak, especially for large,
sparse instances.

The best upper bound (Column 9) is optimal or within one unit of op­
timality for nearly all instances, which explains that the average deviation
from the optimal value is smaller than 1 for all instance types. For large,
sparse instances, a gap often remains. Notice however that the "structured"
instances in the third set (though very sparse) behave better with this respect
than other sparse instances of type (40,30,25) or (60,40,30). It seems that,
for the latter instances, the built-in structure helps in finding an optimal
solution (see also the comments on Table 6.6 hereunder).

Section 6.5 133

Instance type Step I Step II Step III Step III Step IV
MxN C CG IP

, 20 x 15 6 6 + 2 2
8 9 1
10 9 1
12 1 8 1

40 x 30 15 7 3
17 5 4 1
20 4 2 4
25 1 1 7 (1)

60 x 40 20 7 2 1
22 2 7 1
25 3 4 3
30 1 9

10 x 10 4 44 1 43 9(2) 1
15 x 20 8 43 1++ 27 19 7 (3)
25 x 30 10 46 29 20 4 (1)
20 x 30 10 27 38 (1) 29 5

40 x 40 20 4 4 2
50 x 50 25 ++ 6 (1) 3
60 x 60 30 + 6 4

All mstances II 188 I 2 (+6) I 204 (2) II 103 (2) 44 (5) II

Table 6.6 Performance of different steps column generation

134 Chapter 6

Table 6.6 summarizes the results obtained by the complete procedure
described in Section 6.4. We concentrate on the moments at which optimality
is established; that is, Table 6.6 gives, for each instance type, the number
of instances solved in each step of the procedure (the numbers in brackets
refer to 4 instances for which LBcG could not be computed exactly because
cycling occurred in Step III, and to 5 instances fqr which no optimal solution
had been found by the heuristics after completion of Step IV - see Section
6.4; all these instances were ultimately solved to optimality by a variant of
the procedure using different parameter settings). Zero values are omitted
from the table to improve readability.

Thus, for instance, the column labelled "Step I" displays the number
of instances for which optimality is achieved in Step I of the procedure :
these are the instances for which the lower bound LBMSW is equal to Best,
viz. the best sequential heuristic value. The instances for which LBMSW
is optimal and Step II produces an optimal solution are recorded in column
"Step II" (a "+" in this column denotes an instance where LBMSW is not
optimal, but Step II produces an optimal solution). If optimality is not
established in either Step I or Step II, the column generation process starts.
Column "Step III-CG" records the number of instances for which the column
generation procedure provides a lower bound (LBFarley or LBcG) equal to
the best upper bound obtained in Steps I and II. Those instances for which
an optimal 0-1 solution is found in the course of solving the set covering
LP-relaxation are accounted for in column "Step III-IP". After Step III,
instances remain for which the lower bound LBcG is smaller than the best
available upper bound. Column "Step IV" shows the number of instances for
which solving the set covering formulation with a limited number of integer
variables was enough to produce an optimal solution with value equal to
LBcG.

For 188 out of 550 instances (34 %), optimality is achieved in Step 1.
All these are dense instances (of type (M,N,Cd or (M,N,C2)), with the
exception of one small (20,15,12) instance. This comes as no surprise: as
discussed before, both the lower bound LBMSW and the best upper bound
tend to deteriorate when sparsity increases (see Table 6.5).

The upper bound computed in Step II is used to prove optimality for 8
instances only. Thus, this step does not seem very useful as far as finding
good solutions goes. One should however bear in mind that the additional
columns produced in this step may improve the quality of the initial set cov­
ering model, and thus reduce the number of subsequent column generation
steps. More on this topic below.

Section 6.5 135

(.omputa.tlon tIme In seeonds
Instance type H.euns1ilc8 '''.p. 1-1 V Slep 1-1' "" llerallons "" columns fI';, maXImal

aJ1 aJ1 col. gen. col. gen. col. gen. feasible columns
instances instances instances instances instances all instances

MXN 1 2 3 4 5 6

20 X 15 6 2.~ S2.5,2.!~ 1~ \2.5,4~~ 2~ p5,4~~ 4.0 2,!~ 23 S20,2~ 33 ,~18,61),
8 2.3 (2.3,2.4) 26 (10,40) 26 (10'4i~ 3.5 l'i~ 29 (23'4!~ 89 (51,138)

10 2.~ ~2.1,2.:~ 27,?2,3,61 2~ ~~2,36 3.0 1,5 41, t19,77 189, W6,28:~
12 2.1 2.0,2.3 30 2,51 33 14,51 3.7 1,8 43 23,74 327 238,514

40 X 30 15 1 ; ~16,l!1 34 ,~16, 7~), 75 ,~66,79J, 3.0 2,;~ 49 ,~47,52J. 147 ,~57,283),
17 16 15,11) 56 (15,144) 96 (19,144) 3.2 (2,6 11 (56,108) 310 (141,549)
20 15 p4,l:~ 230 (~134,349t) 230 (~134,349t) 5.6 (3,7A 132 (67,18Ol) 931 ~~42,1640~)
25 14 13,14 777 422,1654 771 422,1654 8.1 (1,11 252 Ci 75,344 5909 2032,8745

60 X 40 20 42 ~42,4~1 102 ,~42,249) 242 ~237,24~}
5.7 S~'~~ 85 ~63,10~~ 215 ~137,311}

22 39 (37,42) 192 41,318) 229 (183,318) 3.5 (1,6 90 (62,125) 404 (241,694)
25 37 ~~6,3!~ 449 (263,683) 449 ~~63,683~) 5.5 (2,7) 178 (121,26~~ 1010 (~597,16941)
30 36 35,36 1168 (860,1512) 1168 860,1512 1.8 (1,10) 288 (224,364 5036 2811,9099

10 X 10 4 1.1 p.O,1.;~ 1.1,p.O,3~~ 12J6,3~! 2.1 p,~t 13 ,~9,24). 18J7,3~!
15 X 20 8 3.8 (3.5,4.2 24 (3.6,113) 39 (14,113) 4.0 (1,8 32 (18,62) 16 (28,202)
25 X 30 10 12 (11,13) 54 (11,191;) 90 ~~O,19~~ 4.3 (2,11) 61 (36,13~~ 263 (59,819)
20 X 30 10 10 (9.3,11 62 9.6,158 81 38,158 4.1 (113) 68 (35,120 230 (78,667)

40 X 40 20 25, S24,25 1342 494,240~ 1342 S ~94'240~) 14.5 >~,2~? 184 p33,21~ 5663 ,~4304,6950).
50 X 50 25 4~ ~46,41 2202 153,3887J) 2202/153,3887 24.7 6,42;) 247 (186,32~ ~ 22562 ~~3823,3249~~
60 X 60 30 79 7880 4759 (1967,8626 4759 1961 8626 29.9 (1549 284 (112351 31878 20336,43821

Table 6.7 Computation times and size of problems

Optimality is achieved in Step III for 307 instances (56%). For 204 (37 %)
of these, an optimal solution had already been found in either Step I or Step
II, and only the lower bound is improved here; for the other 103 instances (19
%), both the optimal lower bound and the optimal solution are improved in
Step III. These figures sustain our previous claims concerning the strength
of the linear relaxation of the set covering formulation of the job grouping
problem, and the usefulness of Step III in solving this problem to optimality
(especially sparse instances).

Finally, for 44 instances (9%), Step IV has to be performed in order
to find an optimal solution. This last step is mostly required for sparse
instances, but is almost never needed for the "structured" instances in the
third set. This confirms our earlier conjecture that most heuristics perform
better on the latter instances than on completely unstructured ones.

Table 6.7 contains information about the time required to solve the var­
ious insta.nce types; comparison of these times provides additional informa­
tion on the effectiveness of the procedure. Each entry has the format "av­
erage value (minimal value, maximal value)" (the four instances for which
the column generation procedure cycles have not been taken into a.c,count
when computing these average or extremal values). Column 1 gives the
computation time for Step I of the procedure and Column 2 records the
total computation time for the whole procedure (Steps I to IV) (all times
are in seconds). In columns 3, 4 and 5, averages and extremal values are

136 Chapter 6

restricted to those instances for which execution of the column generation
step (Step III) was necessary. Column 3 reports the total computation time
required by Steps I-N for these instances. Column 4 gives the number of
iterations of the column generation step, that is the number of calls on the
linear programming package. Column 5 indicates the maximum number of
columns occurring in the linear programming subproblems. The figures in
this column are to be contrasted with those in Column 6, where the number
of maximal feasible groups for each instance type is recorded. As mentioned
in Section 6.2.1, this number indicates the size of the complete set covering
formulation of the job grouping problem. Thus, it also gives a measure of
the difficulty of the instances.

A look at Column 6 immediately reveals that only the sparse instances
are really big. For many ofthe dense instances (e.g., oftype (M, N, Ct)), the
complete column generation model could have been explicitly generated and
solved by LINDO, rather than resorting to a column generation procedure.
Let us remember, however, that the characteristics of the dense instances
in the second set correspond to those of the instances solved by Tang and
Denardo (1988b); therefore, considering such instances allows to put our
computational results in perspective.

The time required by Step I of the procedure (Column 1) remains very
short in comparison with the total computing time. It exhibits a tendency
to decrease as capacity increases; this may be explained by the fact that, as
capacity grows larger, the number of groups built by the heuristics decreases
(see Table 6.5).

As may be expected, the total computation time grows together with
the problem dimension, and especially with the number of maximal feasible
columns (Column 6). The number of iterations of the column generation
subroutine and the size of the LP subproblems grow simultaneously. For
small or dense instances, the computation times remain very short. E.g., for
the instances in the second set, the average computation times are between
7 and 62 seconds, and all these instances can be solved within 3+ minutes.
The computation times grow by a factor of 3 when the dimension goes from
(10,10,4) to (15,20,8), and by a factor of 2.5 from (15,20,8) to (20,30,10) or
(25,30,10). Tang and Denardo (1988b) do not report computation times, but
the number of nodes enumerated by their branch-and-bound procedure for
the same instance types roughly grows by factors of 10 and II), respectively.

For larger, sparser instances, computation times become more consider­
able. This can be explained in part by the larger number of iterations of the
column generation step, and by the increasing size of the LP subproblems.

Section 6.6 137

Notice that these two factors may be influenced by the choice of some of the
parameters defining the procedure; in particular, generating less columns
in each step would result in a larger number of iterations, but would also
decrease the time spent in each iteration. In fact, it is likely that the effi­
ciency of the procedure could be boosted by using a heuristic to solve the
generation subproblem, instead of the complete enumeration approach that
we used. Complete enumeration would then only be required in the last it­
erations of the column generation step, to check that no more columns with
negative reduced cost can be found. However, as explained in Section 6.2.3,
such an approach could only be efficiently implemented if an LP solver more
flexible than LINDO is available.

Finally, let us mention that the time needed to execute Step II also grows
sharply with increasing capacity. This time is not singled-out in Table 6.7,
but represents an important chunk of the total computation time: on aver­
age, 4 seconds (resp. 52, 146, 177,505 and 1029 seconds) for the instances
of size (20,15) (resp. (40,30), (60,40), (40,40), (50,50) and (60,60)). In order
to assess the contribution of Step 2 to the efficiency of the whole procedure,
we ran some experiments in which we disabled this step (more exactly, we
disabled the demanding second half of this step, which extends the initial
set covering formulation - see Section 6.4). It turned out that this modified
procedure was slower, on the average, than the initial one - even though it
was faster for some particular instances.

6.6 Summary and conclusions

In this chapter, various lower and upper bounds have been proposed for the
job grouping problem. In particular, we showed how the optimal value of
the LP-relaxation of the set covering formulation of the problem can be com­
puted by a column generation procedure. Although the column generation
subproblem is NP-hard, the procedure that we implemented could solve to
optimality 550 instances of the problem. Many of these instances are larger
and sparser than the ones previously solved in the literature. This was only
possible because of the tightness of the lower bound computed : for all 550
instances, the lower bound was equal to the optimal value of the instance.

An interesting area for further research may be the development of fast
heuristics that would provide optimal results for large instances of the prob­
lem. It would also seem interesting to be able to compute good heuristic
solutions and tight upper bounds for the column generation subproblem. In

138 Chapter 6

Chapter 7 we study extensions of the present setting to situations involving
multiple machines, or where each tool requires several slots in the tool mag­
azine.

Acknowledgments
We gratefully acknowledge useful discussions on the topic of this work with
Antoon Kolen and F. Soumis.

Chapter 7

The job grouping problem
for flexible manufacturing
systems: some extensions

7.1 Introduction

In Chapter 6 the job grouping problem for flexible manufacturing systems
has been studied. This chapter concentrates on extensions of the previous
model. First, the extension where tools may require several slots in the tool
magazine is discussed. Next, we consider the case where several identical
machines are necessary for production. In both cases, the procedures used
in Chapter 6 are extended to derive strong lower and upper bounds on the
optimal value of the problem and results of computational experiments are
presented. In Section 7.4 we discuss the possibility to incorporate due dates
in the model. Section 7.5 summarizes and concludes the chapter.

7.2 Multiple slots

7.2.1 The job grouping problem

In Chapter 6 a job grouping model is considered in which each tool requires
exactly one slot in the tool magazine. However, tools often require several
slots in the magazine as observed by Stecke (1983; 1989), Kusiak (1985a),
Rajagopalan (1985; 1986) and Hwang (1986). Therefore, we relax the one­
slot assumption, by allowing the number of slots necessary for a tool to be
tool-dependent. We will perform computational experiments on problems for
which tools need 1 to 3 slots, as suggested by Rajagopalan (1985), Shanker
and Tzen (1985) and Mazzola, Neebe and Dunn (1989). First, we briefly
discuss the set covering formulation of the job grouping problem and the
column generation procedure used to solve it. The changes that are necessary
in case tools need several slots in the tool magazine are incorporated in this
explanation.

Assume there are N jobs and M tools. We denote by Sk the number
of slots that are necessary to place tool k in the tool magazine. The tool
requirements are represented by a so-called tool-job matrix A of dimension
M x N, with:

aki = 1 if job i requires tool k
= 0 otherwise,

for k = 1, ... , M and i = 1, ... , N. A subset (group) S of jobs (or of columns
of A) is called feasible if the tools that are needed for these jobs together
require at most C slots, i.e. if Lk {Sk : aki = 1 for some i E S} ~ C. We do
not consider the possibility of tool overlap (where the total number of slots

142 Chapter 7

needed by a set of tools is strictly less than the sum of the slot requirements
of the separate tools (Stecke, 1983». The job grouping problem consists in
finding a minimum set of feasible groups such that each job is contained in
(at least) one group. It can be formulated as a set covering problem, as
shown in Chapter 6. Let us suppose that there exist P feasible groups, and
let

% = 1 if job i is contained in the feasible group j,
= 0 otherwise,

for i = 1, ... , Nand j = 1, ... , P. The job grouping problem is:

p

minimize LYj
j=l
P

subject to Lq··y· > 1 'J J - i = 1, ... ,N,
j=l

y' > 0 J - j = 1, ... ,P,

Yj integer j = 1, ... ,P,

(7.1)

(7.2)

(7.3)

(7.4)

where Yj = 1 if group j is part of the optimal covering. In comparison
with the model described in Chapter 6 the introduction of tool-dependent
slot requirements has influenced the set of feasible columns {qj} (where
qj = (qlj, ... ,qNjf), but model (7.1) - (7.4) remains otherwise the same.

Notice that the job grouping problem with Sk > 1 for some k could also
be transformed into an equivalent job grouping problem with sk = 1 for all
k in a straightforward way. Namely, consider the tool-job matrix A and the
values Sk for each tool k. Now, construct a new tool-job matrix A' where
each row k in A is replaced by Sk similar rows in A'. The tool-job matrix
A' has L:~1 Sk rows and N columns. Solving the job grouping problem
with tool-job matrix A', sk = 1 for all k and tool magazine capacity C is
equivalent to solving the job grouping problem described by the parameters
A, Sk and C. This transformation has the disadvantage that it expands the
size of the problem, but clearly shows that the job grouping problem where
tools need several slots is a special case of the single-slot problem. Thus,
the lower and upper bounding procedures developed in Chapter 6 can be
easily adjusted to this case. In fact, this section can be seen as restating the
procedures described in Chapter 6 in such a way that they can be applied
directly to the instance A, Sk, C. The result will be a general procedure for
the "multiple slots" problem with no preprocessing of the data. The new

Section 7.2 143

formulation will be more compact. Notice that we may expect instances
with Sk > 1 to have a different behaviour than the single-slot ones. This will
be investigated by performing computational experiments.

7.2.2 Lower bounds via column generation

To find a lower bound for the set covering problem (7.1) - (7.4), we want to
solve its LP-relaxation, i.e. the problem (7.1) - (7.3). A column generation
procedure is used to calculate this bound, as in Chapter 6. At each iteration
of the column generation procedure, we solve the LP obtained by restricting
(7.1) - (7.3) to some subset T of columns, i.e. we solve a problem of the
form:

minimize L: Yj (7.5)
JET

subject to L: %Yj ~ 1 i = 1, ... , N, (7.6)
JET

Yj ~ 0 JET, (7.7)

for some T ~ {1, ... , Pl. Let y* be an optimal solution to (7.5) - (7.7) and
A* be an optimal solution to the dual of (7.5) - (7.7). In each iteration ofthe
column generation procedure the generation subproblem has to be solved
(see Section 6.2). The generation subproblem identifies columns that have
negative reduced cost and may, when added to the set covering formulation,
improve the optimal solution value. The generation subproblem is

given Ai, ... , AN, is there a feasible group S such that L: Ai > 1? (7.8)
iE8

After introduction of different sizes for the tools the generation subprob­
lem can be formulated as follows (see also Hirabayashi, Suzuki and Tsuchiya
(1984)):

N

maximize L: Aixi
i=l

subject to akixi ~ Zk

M

L: SkZk ~ C
k=l

Xi E {0,1}

Zk E {0,1}

i = 1, ... , N; k = 1, ... , M,

i = 1, ... ,N,

k=1, ... ,M,

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

144

where

Xi = 1 if job i is in group S
= 0 otherwise,

for i = 1, ... , N, and

Zk = 1
=0

if tool k is required by some job in S,
otherwise,

Chapter 7

for k = 1, ... , M. Only restriction (7.11) has changed in comparison with
the generation subproblem in Section 6.2.3, so as to incorporate the number
of tool slots needed for each tool. The problem (7.9) - (7.13) is NP-hard and
we solve it using the same enumeration procedure as in Section 6.2.3. The
column generation procedure that is used is basically the same as described
in Section 6.2.4. When the column generation procedure stops we have an
optimal solution y* for the LP relaxation (7.1) - (7.3). Rounding up the
solution value E jET yJ to the next integer gives a lower bound for the job
grouping problem. We will refer to the bound rEjET YJl as LBcG. We

will also consider the lower bound LBFarley = rE~l -Xi!Zl, where Z is the
optimal solution value ofthe generation subproblem (see also Farley (1990)).

7.2.3 Other lower bounds

The sweeping procedure (Tang and Denardo, 1988b) provides a lower bound
for the job grouping problem when all tools need 1 slot. Tang and Denardo
(1988b) did not consider the "multiple slots" problem. However, the sweep­
ing procedure can be modified to be applicable to "multiple slots" instances.
Call two jobs compatible if they form a feasible group. The sweeping proce­
dure sequentially creates a number of groups as follows. In each step of the
procedure, a job (seed) first is selected which is compatible with the fewest
number of other (not yet selected) jobs (in case of a tie, the job for which the
tools necessary for the set of compatible jobs require the smallest number
of slots in the tool magazine is selected). Next, the seed along with all jobs
which are compatible with it are selected to form one group. The proce­
dure is repeated until all jobs have been selected. The number of groups
so created, say L, is a valid lower bound for the job grouping problem. We
also use the trivial lower bound rE~l sk/Cl. Combining this bound with
L yields the lower bound LBsw = maxHE~l sk/Cl,L}.

A better lower bound can be obtained in each step of the sweeping pro­
cedure by summing the number of groups already created by the sweeping

Section 7.2 145

procedure and the lower bound rEkeu;erT; sk/Cl, where I is the set of "not
yet selected" jobs, and Ti is the set of tools needed for job i. This procedure
generates a sequence of valid lower bounds, the first of which is equal to
rE~l sk/Cl and the last of which is equal to L. We refer to this procedure
as the "modified sweeping procedure". It yields a new lower bound LBMSW,
equal to the maximum of the bounds in the sequence.

7.2.4 Upper bounds

We apply sequential heuristic procedures that use a two-step approach for
building groups. In the first step, a job is picked as a seed. Unless explained
otherwise, we always pick a job for which the tools require the highest num­
ber of slots. Then a selection rule is used to add jobs to the group until the
tool magazine capacity constraint prohibits the addition of any other job to
this group. The two-step procedure is repeated until all jobs are assigned to
some group. For selecting the next job to be-assigned to a group (in step 2)
a number of different rules have been considered.

For a group S and a job i ~ S, let
ti =number of slots necessary for the tools required by job i;
bi =number of slots necessary for the tools required both by job i and by
some job already in S.

1. MIMU rule: select a job i for which bi is maximal; in case of a tie select
a job for which ti is minimal (this is a straightforward generalization
ofthe procedure by Tang and Denardo (1988b».

2. MI rule: select a job i for which bi is maximal.

3. MU rule: select a job i for which (ti - bi) is minimal.

4. Whitney and Gaul rule: select job i for which (bi + 1)/(ti + 1) is max­
imal (Whitney and Gaul (1985) did not consider the "multiple slots"
problem, but this rule is a straightforward extension of the single-slot
rule).

5. Rajagopalan rule: Each tool k receives a weight ak equal to the number
of jobs that require tool k among the jobs that still have to be assigned
to a group. Then, the priority of job i is calculated by summing the
weights Sk . ak of the tools that must be added to the tool magazine in
case job i is assigned to the group. The job with the largest priority

146 Chapter 7

is selected first. For this rule, the first job in each group (seed) is also
selected according to the same criterion (see Rajagopalan (1985)).

6. Modified Rajagopalan rule: The Rajagopalan rule can be changed in
the following way: the weight ak for each tool k is defined as the
number of jobs that require tool k among the jobs already selected in
the group. The priority of a job is the sum of the weights Sk • ak of the
tools that are needed for that job. The job with the highest priority is
selected.

7. Marginal gain rule: The addition of job i to a group usually requires
that extra tools be loaded in the tool magazine. This new tool con­
figuration may in turn allow the execution of other, not yet selected,
jobs; denote by Pi the number of such jobs. This rule selects a job i
that maximizes Pi.

Compared to what was done in Section 6.3.1, the MIMU, MI, MU and
Whitney and Gaul rule have been adjusted by simply updating the defini­
tions of parameters ti and bi. Rules 5 and 6 have been changed by incorpo­
rating the number of slots in the definition, as in Rajagopalan (1985). The
Marginal gain rule uses the new definition of feasibility of a group. The set
covering heuristics can also be used as described in Section 6.3.2.

7.2.5 Adjusting the column generation procedure

The column generation approach can be easily adapted to the multiple slots
per tool-case. The procedure that is implemented consists of four main
steps. We first briefly sketch the whole procedure before commenting on
each individual step (see also Section 6.4).

Step I: Use the sequential heuristics to produce a first upper bound. Com­
pute the simple lower bounds LBsw and LBMSW. If optimality is
achieved then STOP. Otherwise construct an initial set covering for­
mulation using the groups that have been generated using the heuristic
procedures.

Step II: Use the greedy heuristic to solve the initial set covering formula­
tion. If optimality is achieved then STOP.

Step III: Solve the LP-relaxation ofthe current formulation. Check whether
the primal solution is integral and whether its value improves the cur­
rent upper bound. Use the dual variables to formulate the generation

Section 7.2 147

subproblem and generate new columns with negative reduced cost.
Calculate LBFarley. IT optimality is achieved then STOP. IT no columns
with negative reduced cost have been found, then continue with Step
IV. Otherwise, update the set covering formulation and repeat Step
III.

Step IV: Use the last set covering formulation for finding an improved
heuristic solution.

The lower and upper bounding procedures of Step I have been described
in Sections 7.2.2 - 7.2.4. In Step II no additional columns are generated
(contrary to what was done in Section 6.4 for the single-slot case) for reasons
of time-efficiency. The set covering formulation is solved using the well­
known greedy heuristic (Nemhauser and Wolsey, 1988). The LP-relaxation
is solved using the package LINDO. When the generation subproblem is
solved to optimality (Le. when a complete enumeration is performed), its
optimal value Z is used for computing the bound LBFarley' IT this lower
bound is equal to the upper bound the procedure stops. IT no new column
has been generated (Le. Z = 1 and LBFarley = LBcG), then the column
generation subroutine terminates, and we continue with step IV. Otherwise,
at most 200 new columns are added to the set covering formulation. Also,
to limit the size of the formulation all columns with a small reduced cost
are eliminated. More precisely, columns for which r:f:l %Ai < 1 - a are
removed from the formulation, where a is an arbitrary chosen parameter (a
= 0.25). Furthermore, columns with r:f:l %Ai < 0.85 are removed when
the number of columns exceeds 700 (an arbitrary maximum). Step IV of
the procedure is extended in the following way. We first solve the last set
covering formulation by the greedy heuristic. IT this is not effective, we
solve a slightly modified set covering formulation with LINDO, requiring
only a limited number of variables to take 0-1 values. More precisely, the
T variables which assume the largest value in the continuous solution of the
set covering formulation (columns for which r:f:l %Ai < 0.9 are removed
to limit the size of the formulation), extended by the additional constraint
r:f=l Yj 2': LBcG, are forced to be integer. The parameter T is taken equal
to LBcG + 5 if the number of columns is smaller than 50 (resp. LBcG + 15
if the number of columns is between 50 and 150, and LBcG + 25 otherwise).
Because of the small number of integer variables, the resulting mixed 0-1
problem can be solved by LINDO's branch-and-bound subroutine (see also
Section 6.4). IT the solution is still fractional after this step, additional

148 Chapter 7

variables (that still have positive fractional values) are forced to take 0-1
values and the formulation is solved again. This procedure is repeated until
an integer solution is obtained.

7.2.6 Computational experiments

We generated two sets ofrandom instances. Table 7.1 contains the parame­
ter ~ettings for the first set. This set of instances involves four instance sizes
(M, N). The capacity ofthe tool magazine takes one ofthe values Ct, C2, C3.
Min (resp. Max) represent the minimal (resp. maximal) number oftool slots
needed by each job. For each instance type (M, N, C) two ranges of values
for sk(k = 1, ... , M) are considered, as shown in column labelled" Sk E".
We assume that tools need a small number of tool slots (Sk E {I, 2, 3}),
as often seems to be the case in real-world systems. Rajagopalan (1985),
Shanker and Tzen (1985) and Mazzola et al. (1989) perform computational
experiments using these values. Stecke (1989) gives a detailed description of
a system for which the tools take either 1 or 3 slots. For the first range of
values, Sk only takes values in {I, 2, 3}, namely Sk = 1 for k = 1, ... , LjMJ,
Sk = 2 for k = LjMJ + 1, ... , L~MJ and Sk = 3 for k = L~MJ + 1, .. . ,M.
For the second range, Sk E {I, 3} for all k, with Sk = 1 for k = 1, ... , LjMJ
and Sk = 3 for k = LiMJ + 1, ... ,M.

Problem size C1 C2 C3 Sk E Min Max
MxN
10 x 10 7 10 13 {1,2,3} 1 6
10 x 10 7 10 13 {1,3} 1 6
15 x 20 13 15 18 {1,2,3} 1 12
15 x 20 13 15 18 {1,3} 1 12
25 x 30 15 20 25 {1,2,3} 1 14
25 x 30 17 21 25 {1,3} 1 16
60 x 40 30 40 45 {1,2,3} 1 29
60 x 40 33 40 45 {1,3} 1 32

Table 7.1 Parameters first set of instances

For each problem size (M, N, C) 10 random matrices A were generated. For
each j = 1, ... , N, the j-th column of A was generated as follows. First,
an integer tj was drawn from the uniform distribution over [Min,Max]: this

Section 7.2 149

number denotes the number of tool slots available for job j. Next, a set
Tj of distinct integers were drawn from the uniform distribution over [1, M]
until at most tj slots were used, i.e. until L:kETj Sk > tj - 3. These integers
denote the tools required by job j, i.e. akj = 1 if and only if k E Tj. Finally,
we checked whether Tj ~ Ti or Ti ~ Tj held for any i < j. If any of these
inclusions was found to hold, then the previous choice of Tj was cancelled,
and a new set Tj was generated.

Problem size C1 Sk E Min Max Minjob Maxjob
MxN
30 X 30 20 {1,2,3} 7 11 4 7
30 X 30 20 {1,3} 7 11 4 -7
40 X 40 30 {1,2,3} 10 16 5 8
40 X 40 30 {1,3} 10 16 5 8

Table 7.2 Parameters second set of instances

In Table 7.2 the parameter settings are described for the second set of in­
stances (comparable to the third set in Section 6.5.1). For each instance class
(M, N, C) 10 instances were generated. This second set explicitly takes into
account the interdependence between jobs. First, a number NI is drawn
uniformly between Minjob and Maxjob, and a subset Ml, containing tools
that together require exactly C tool slots, is randomly chosen. Then, we
create NI "similar" jobs, by making sure that these jobs use only the tools
in MI. These jobs are generated as explained before for the first set of in­
stances (except that they are restricted to the tools in Md. When NI jobs
have been defined, then the procedure is iterated to produce N2 , N3 , • •• ad­
ditional jobs. This process stops after k iterations, when almost all columns
of the incidence matrix have been generated (specifically, when L:f=l Ni ~ N
- Maxjob). Then, the last columns are filled independently of each other,
as for the first set of instances. Finally, a real-world instance describ,ed in
Stecke (1989) was also tested. This instance involves 10 jobs and 141 tools,
with 100 tools using 1 slot and 41 tools using 3 slots.

7.2.7 Computational results

The column generation procedure has been implemented using Turbo Pascal,
and tested on the instances described in Section 7.2.6. The experiments

150 Chapter 7

were run on an AT personal computer with a 16MHz 80386sx processor and
80387 mathematical coprocessor. This section reports on the results of our
experiments.

Using the procedure of Section 7.2.5. 271 of the 280 "multiple slots"
instances were solved to optimality. The gap between the value of the LP­
relaxation of the set covering formulation and the value of the optimal solu­
tion was smaller than 1 for all instances solved to optimality. In other words
the lower bo-und LBoG was optimal for these instances. For the remaining
9 instances the procedure finished with a lower and upper bound that dif­
fered by one unit. As a matter of fact, the gap between the optimal value
of the LP-relaxation of the set covering formulation and the best known up­
per bound amounts to maximal 1.05 for these instances. For some of these
instances, a branch- and-bound procedure was eventually used to show that
the upper bound was optimal and there was indeed a gap between the lower
bound LBoG and the optimal solution value. Nevertheless, our experiments
seem to show that the lower bound obtained by using the LP-relaxation
of the set coveririg formulation is usually very good, even though it is not
optimal for all instances.

The quality of the lower bounds LBsw, LBMSW, LBoG and of the so­
lutions obtained by the sequential heuristics in step I of the procedure is
compared in Table 7.3. The column labelled OPT gives the average number
of groups in the optimal solution for the instances of each type that were
solved to optimality using the procedure of Section 7.2.5. The next three
columns bear on the lower bounds. The columns 2 to 8 in Table 7.4 cor­
respond to the upper bounds delivered by the seven sequential heuristics,
and the last column (labelled Best) reports on the upper bound obtained by
retaining the smallest of the previous seven ones. Each entry in columns 2 to
4 of Table 7.3 and columns 2 to 9 in Table 7.4 has the format 8 (a). In a row
labelled (M, N, C) and a column labelled X, 8 is the average difference over
all instances oftype (M, N, C) between the lower (or upper) bound X and
the best lower (or-upper) bound computed for this instance in the course of
the procedure; that is, 8 = X - BO UN D, where X is the average of the
lower (or upper) bound X and BO UN D is the average of the best lower (or
upper) bound.

Section 7.2 151

Lowerbounds
Instance type

OPT LBsw LBMSW LBcG
MxN C 1 2 3 4

10 X 10 7 3.3 -0.3 (7) -0.3 (7) o (10)
10 2.0 0.0 (10) 0.0 (10) 0(10)

SkE{1,2,3} 13 2.0 0.0 (10) 0.0 (10) 0(10)
10 X 10 7 4.3 -0.4 (6) -0.1 (9) 0(10)

10 2.8 -0.8 (2) -0.8 (2) o (10)
Sk E {1, 3} 13 2.0 0.0 (10) 0.0 (10) 0(10)

15 X 20 13 6.0 -1.2 (1) -1.0 (2) o (10)
15 4.2 -1.5 (0) -1.3 (0) o (10)

Sk E {1, 2, 3} 18 2.8 -0.8 (2) -0.8 (2) o (10)
15 X 20 13 7.6 -1.0 (2) -D.8 (3) 0(10)

15 5.1 -1.5 (1) -1.4 (1) o (10)
Sk E {1,3} 18 3.3 -1.3 (0) -1.1 (0) 0(10)

25 X 30 15 13.4 -1.2 (2) -0.8 (6) 0(10)
20 7.2 -3.7 (0) -3.3 (0) o (10)

skE{1,2,3} 25 4.4 -2.4 (0) -2.4 (0) 0(10)
25 X 30 17 12.8 -0.9 (3) ~0.8 (4) 0(10)

21 7.9 -2.8 (0) -2.7 (0) 0(10)
Sk E {1,3} 25 5.6 -3.2 (0) -2.9 (0) 0(10)

60 X 40 30 18.1 -11.3 (0) -11.3 (0) o (10)
40 10.7 -5.1 (0) -4.8 (0) o (10)

SkE{1,2,3} 45 8.6 -6.0 (0) -5.6 (0) o (10)
60 X 40 33 19.4 -11.8 (0) -11.8 (0) o (10)

40 13.7 -6.1 (0) -6.1 (0) 0(10)
SkE{1,3} 45 11.1 -5.6 (0) -5.5 (0) 0(10)

30 X 30 {1,2,3} 20 5.3 -2.3 (0) -2.3 (0) 0(10)
30 X 30 {1, 3} 20 5.5 -2.5 (0) -2.5 (0) 0(10)

40 X 40 {1,2,3} 30 6.4 -3.4 (0) -3.4 (0) 0(10)
40 X 40 {1, 3} 30 6.8 -3.7 (0) -3.7 (0) 0(10)

Table 7.3 Quality of lower bounds

152 Chapter 7

Upper bounds

Insta.nce type OPT MIMU MI MU Whit. Rajaso. Mod. Marg. Best
+ Gaul pala.n Raj. gain

MX 1 2 3 4 5 6 7 8 9

10 X 10 7 3.3 0.1,\9), 0.3,\7), 0.1 I;'! 0.1 I~! 0.5 I;) 0.25.8) 0.6 \~! O.Q (.10)
10 2.0 0.2 (10) 0.2 (10) 0.4 (8) 0.4 (8) 0.5 (7) 0.2 (10) 0.4 (8) 0.2 (8)

S E {1,2,3} 13 2.0 0.0 (10) 0.0 (10) 0.0 (iO) 0.0 (iO) 0.0 (iO) 0.0 (10) 0.0 (10) 0.0 (iO)
10 X 10 7 4.3 0.1 \1~! 0.1 \1~! 0.2 \~! 0.1 \1~! 0.4 \!! 0.1 \1~! 0.3 ,~8I 0.1 ,~9J,

10 2.8 0.0 (10) 0.0 (10) 0.1 (9) 0.0 (10) 0.2 (8) 0.0 (10) 0.0 (10) 0.0 (10)
skE{1,3} 13 2.0 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.4 (6) 0.0 (10) 0.2 (8) 0.0 (10)

15 X 20 13 6.0 0.7 \~! 0.3 \10) 1.2 \~! 0.8 \~! 1.6 \~! 0.3. (}~) 0.6 I:! 0.3 I:!
15 4.2 0.5 (8) 0.3 (10) 0.8 (5) 0.5 (8) 1.6 (1) 0.4 (9) 0.8 (5) 0.3 (7)

sk E {1,2,3} 18 2.8 0.1 (9) 0.0 (10) 0.2 (8) 0.1 (9) 0.9 (2) 0.2 (8) 0.4 (6) 0.0 (10)
15 X 20 13 7.6 0.5 I~! 0.4 I:! 1.1 I~! 0.6 I:! 1.1 I~! 0.4 I:! 0.9 \~! 0.3 I~!

15 5.1 0.6 (6) 0.4 (8) 1.0 (3) 0.5 (7) 2.1 (0) 0.4 (9) 1.0 (2) 0.2 (8)
S E {I, 3} 18 3.3 0.5 (6) 0.3 (8) 0.5 (7) 0.5 (7) 0.8 (5) 0.3 (8) 0.5 (5) 0.1 (7)

25 X 30 15 13.4 0.5 (8) 0.4 (9) 0.9 (5) 0.4 (9) 2.3 (0) 0.3. (}O) 0.8 (5) 0.3 (7)
20 7.2 0.9 (5) 0.5 (8) 1.3 (3) 0.8 (5) 3.2 (0) 0.9 (4) 1.5 (2) 0.3 (6)

sk E {1,2,3} 25 4.4 0.6 (9) 0.5 (10) 1.0 is) 0.9 (6) 2.5 iO) 0.7 (8) 1.2 (4) 0.5 (4)
25 X 30 17 12.8 0.8 (3) 0.2 (9) 1.1 (2) 0.6 (5) 2.4 (0) 0.2 (9) 1.0 (1) 0.1 (9)

21 7.9 1.3 (5) 0.8 (10) 1.7 (2) 1.2 (6) 3.3 (0) 0.9 (~j 2.0 i~) 0.8 I;)
S E f1, 3} 25 5.6 0.8 (6) Q.7 '(7) 1.3 (1) 0.9 (3) 3.1 (0) 0.7 (7 1.3 2) 0.4 5)

60 X 40 30 18.1 0.8 \5! 0.4 \9! 1.5 \~! 0.8 \5! 1.6 \~! 0.4 I:! 1.2 \~! 0.3 \:!
40 10.7 1.6 (1) 0.6 (9) 2.2 (0) 1.4 (4) 2.9 (0) 0.7 (8) 2.0 (0) 0.5 (4)

sk E {1,2,3} 45 8.6 1.3 (4) 0.5 (10) 1.9 (1) 1.0 (5) 3.5 (0) 0.8 (7) 2.2 io) 0.5Gt
60 X 40 33 19.4 0.5 I~! 0.4. (.I 0) 1.2 I~I 0.5 I:! 1.9 \~I 0.4. (}~) 1.1 \~! 0.4 \~!

40 13.7 1.6 (2) 0.6 (9) 2.1 (0) 1.5 (2) 2.9 (0) 0.7 (8) 1.9 (1) 0.5 (5)
S E {I, 3} 45 11.1 1.3 (5) 0.8 (10) 2.4 (0) 1.8 (1) 3.3 (0) 1.1 (7) 2.4 (0) 0.8 (2)

30 X 30y,2,~j 20 5.3 0.6 I~! 0.6 \~! 0.8 \~! 0.6 \:1 3.2 \~! 0.5 \~! 1.4 \~! 0.3 \6)
30 X 30 {1,3} 20 5.5 0.7 (8) 0.9 (6) 1.0 (5) 0.7 (8) 3.2 (0) 0.7 (8) 1.3 (3) 0.5 (5)

40 X 40 {1,2,3} 30 6.4 1.3 (2) 0.7 (7) 1.5 (3) 1.1 (3) 5.0 (0) 1.3 (2) 2.3 (1) 0.4 (5)
40 X 40 {1,3} 30 6.8 1.2 (7) 0.8 (9) 1.4 (5) 1.3 (5) 5.0 (0) 1.3 (5) 1.9 (2) 0.7 (3)

Table 7.4 Quality of upper bounds

Section 7.2 153

In columns 2 to 8 in Table 7.4 (that is; for the sequential heuristics), die
entry a denotes the number of instances of type (M, N, C) for which the
upper bound X is best among the sequential heuristics. In the columns 2,
3, 4 of Table 7.3 and column 9 of Table 7.4, a is the number of instances for
which X is equal to the best lower (or upper) bound of the instance.

For 271 out of 280 instances the best lower bound (LBcG) is equal to the
optimal solution value. For the remaining 9 instances the best lower bound
and the best upper bound differ by one group. The lower bounds LBsw
and LBMSW are seldom sharp (only for small instances and instances of
type (M, N, C 1». Table 7.4 also shows that the MI and the Modified Ra­
jagopalan rules (in that order) outperform the other rules. The performance
of the MIMU and the Whitney and Gaul rule is quite good. The MU and
the Marginal gain rules are much weaker. The Rajagopalan rule performs
even worse (especially for the instances of the second set). Taking the best
solution of the sequential heuristics, a solution is obtained which is optimal
or close to optimality (gap of 1) for nearly all instances (for about half of the
larger instances an optimal solution is obtained). Because of the poor quality
of the lower bounds LBsw and LBMSW the column generation procedure
is needed for a large majority of the instances.

154 Chapter 7

Instance type Step I Step II Step III Step III Step IV Step IV
MxN (J CG IP A B

10 x 10 7 7 3
10 8 2

s" E {I, 2, 3} 13 10
10 x 10 7 8 1 1

10 2 8
s" E {I,3} 13 10

15 x 20 13 1 6 1 2
15 7 1 2

s" E {I, 2, 3} 18 2 8
15 x 20 13 2 5 2 1

15 8 2
s" E {I,3} 18 7 1

25 X 30 15 4 3 3
20 6 1 2

s" E {I, 2, 3} 25 4 2(3)
25 X 30 17 4 + 6

21 2 3 5
s" E {I, 3} 25 5 1 3

60 X 40 30 7 2 1
40 4 1 3(1)

s" E {I, 2, 3} 45 5 3 2
60 X 40 33 6 4

40 5 3 1 1
s" E {I,3} 45 2 2 4 2

30 X 30 {I, 2, 3} 20 6 2 1
30 X 30 {I,3} 20 5 3 1 1

40 X 40 {I, 2, 3} 30 5 4
40 X 40 {I, 3} 30 3 2 4

All mstances II 58 I 0 (+1) I 127 32 I 44 (4) I 6

Table 7.5 Performance of different steps of the column generation
procedure

Gap

2

1
1

1

1

1

1
1

9 II

Section 7.2 155

Table 7.5 summarizes the results obtained by the complete procedure de­
scribed in Section 7.2.5. We concentrate on the moments at which optimality
is established; that is, Table 7.5 gives, for each instance type, the number of
instances solved in each step of the procedure (the numbers in brackets refer
to 4 instances for which no optimal solution had been found after comple­
tion of Step IV; all these instances were ultimately solved to optimality by a
variant of the procedure using different parameter settings). Zero values are
omitted from the table to improve readability. Thus, for instance, the col­
umn labelled "Step I" displays the number of instances for which optimality
is achieved in Step I of the procedure : these are the instances for which
the lower bound LBMSW is equal to Best, viz. the best sequential heuristic
value. The instances for which LBMSW is optimal and Step II produces an
optimal solution are recorded in column "Step II" (a "+" in this column
denotes an instance where LBMSW is not optimal, but Step II produces an
optimal solution). If optimality is not established in either Step I or Step
II, the column generation process starts. Column "Step III-CG" records the
number of instances for which the column generation procedure provides a
lower bound (LBFarley or LBcG) equal to the best upper bound obtained
in Steps I and II. Those instances for which an optimal 0-1 solution is found
in the course of solving the set covering LP-relaxation are accounted for in
column "Step III-IP". After Step III, instances remain for which the lower
bound LBcG is smaller than the best available upper bound. Column "Step
IV - A" shows the number of instances for which solving the set covering
formulation with a limited number of integer variables was enough to pro­
duce an optimal solution with value equal to LBcG. Column "Step IV - B"
shows the number of instances for which Step IV - A did not suffice, but
for which an optimal solution was obtained after more variables were forced
to take 0-1 values, as described in Section 7.2.5. Column "Gap" displays
the number ofinstances for which the best lower bound (LBcG) was strictly
smaller than the best known upper bound at the end of the procedure.

Table 7.5 shows that for 21 % of the instances optimality is achieved in
Step I (mainly smaller instances). For only one instance Step II offered a
better upper bound. In Step III optimality is achieved for 159 instances (57
%). For 32 instances (11 %) the upper bound was improved in Step III. For
63 instances (23 %) Step IV had to be performed. Four of these instances
were solved with different parameter settings. For another 6 instances the
solution of the set covering formulation remained fractional after a number
of variables were forced to take 0-1 values. Nine instances could not be
solved. For these instances a gap remained bety.reen LBcG and the best

156 Chapter 7

upper bound (the largest gap between the LP-relax:ation value and the best
upper bound amounts 1.05). A comparison with results of Section 6.6 shows
that these instances seem to be harder than those considered in the previous
study (see also column 6 in Table 7.6).

Table 7.6 contains information about the time required to solve the var­
ious instance types; comparison of these times provides additional informa­
tion on the effectiveness of the procedure. Each entry has the format "av­
erage value (minima! value, maximal value)" (the four instances for which
the column generation procedure cycles have not been taken into account
when computing these average or extremal values). Column 1 gives the
computation time for Step I of the procedure and column 2 records the total
computation time for the whole procedure (Steps I to IV) (all times are in
seconds). In columns 3, 4 and 5, averages and extremal values are restricted
to those instances for which execution of the column generation step (Step
III) was necessary. Column 3 reports the total computation time required
by Steps I-IV for these instances. Column 4 gives the number of iterations
of the column generation step, that is the number of calls on the linear pro­
gramming package. Column 5 indicates the maximum number of columns
occurring in the linear programming subproblems. The figures in this col­
umn are to be contrasted with those in Column 6, where the number of
maximal feasible groups for each instance type is recorded. This number in­
dicates the size of the complete set covering formulation of the job grouping
problem (see Section 7.2.1). Thus, it also gives a measure of the difficulty of
the instances.

The computation times in Table 7.6 show that the large instances (espe­
cially oftype (M, N, C3» take a lot oftime to reach optimality. This is due
to the many calls to LINDO and the size of the set covering formulations
that have to be solved in each step. For larger instances columns 2 and 3 are
similar, because all instances need the execution of the column generation
procedure. Column 4 shows that at most 26 calls to LINDO are necessary.
The maximal average number of columns lies around 600 (which is close to
the maximum of 700 columns). Th~ last column shows that the size of the
complete set covering formulation for the large instances is indeed very large.

The real-world instance of Stecke (1989) was solved to optimality by 6 out
of 7 sequential heuristics (not recorded in the tables 7.4, 7.6 and 7.6). The
lower bound LBcG was optimal, in contrast with the other lower bounds.

C
o

m
p

u
ta

.t
io

n
 t

im
e

(i
n

 s
ec

o
n

d
s)

In

st
a.

n
ce

 t
y

p
e

l:
ie

u
n

st
lc

s
::

;t
ep

s
1

·1
 V

::

;t
ep

 1
·1

 V

'#
 I

te
ra

.t
lo

n
s

a.1
I

a.1
I

co
l.

g

en
.

co
l.

g

en
.

in
st

a
n

ce
s

in
st

a.
n

ce
s

in
st

a.
n

ce
s

in
st

a.
n

ce
s

M
X

N

(
;

1
2

3
4

1
0

X

 1
0

7

1
.1

 ~
1.
1,
1.
~~

6
.8

 ~
1.

1,
25

 ~
20

 ~
15

,2
~

~
4

.0
 ~
3,

~!

1
0

1.

1
(1

.0
,1

.1
)

7
.9

 (
1

.0
,4

5
)

3
5

 (
2

5
,4

5
)

7
.0

 (
5

,9
)

"I
<

E
 {

1
,2

,3
}

1

3

1
.1

 (
1.

0,
1.

2)

1
.1

 (
1

.0
,1

.2
)

n
.a

.
n.

a.
.

1
0

X

 1
0

7

1
.0

 P
.1

,1
.2

l
4

.3
 ~
1
.
O
,
1
9
}

1
7

 ~
~5
,l
~l

3
.5

,(
.3

,4
}

1
0

1.

1
(1

.0
,1

.1
)

26
 (

1
.0

,5
0

)
3

2
 (

2
0

,5
0

)
6

,4
 (

4
,1

0
)

"
I<

E
{

l,
3

}

1
3

1.

1
(1

.0
,1

.1
)

1.
1

(1
.0

,1
.1

)
n.

a.
.

n.
a.

.
1

5

X
 2

0

1
3

3

.5
 ~
3.
4,
3.
~!

4
3

 ~
3.

6,
8~

!
4

7
 .(

:5
,8

8
1

-
5

.6
 ~
3,

~~

1
5

3

.4
 (

3
.2

,3
.6

)
8

7
 (

4
2

,1
7

3
)

8
7

 (
4

2
,1

7
3

)
1

0
.0

 (
5

,1
6

)
s
k
 E

 {
1

,2
,3

}

1
8

3

.2
 (

3
.1

,3
.a

i
8

6
 (

3
.1

,1
9

9
)

1
0

7
 '(

4
7

,1
9

9
)

1
1

.6
 (

5
,2

6
)

1
5

X

 2
0

1

3

3
.6

 ~
3.
5,
3.
~~

35
, ~
3.

6,
n!

43

 ~
29
,
7~
?

6
.0

 ,
~4

,8
),

1

5

3
.4

 (
3

.2
,3

.6
)

5
7

 (
4

1
,8

6
)

5
7

 (
4

1
,8

6
)

7
.5

 (
5

,1
2

)
s
I<

E
{

l,
3

}

1
8

3

.2
 (

3
.2

,3
.3

)
11

1
(4

1
,1

7
2

)
11

1
(4

1
,1

7
2

)
1

0
.8

 '(
6

,2
i)

25

X

 3
0

1

5

11
 P
l,
l~
),

49
 (

1
1

,9
7

)
73

 (
4

3
,9

7
).

5

.8
 ,~

2,
9)
,

2
0

1

0
 (

9
.8

,1
0

)
3

4
2

 (
1

2
0

,8
6

2
)

3
4

2
 (

1
2

0
,8

6
2

)
8.

1
(5

,1
0

)
"
k

E
{

l,
2

,3
}

25

9

.7
 (

9
.4

,1
0

't

1
3

6
9

 (
6

3
2

,2
5

7
3

l
1

3
6

9
 (

6
3

2
,2

5
7

3
)

1
3

.4
 (

9
,1

 i)

2
5

X

 3
0

1

7

11
 ~
11

,1
2)

5

9
 (

1
1

,1
3

6
)

91

~4

1,
13

6)

6
.2

 (
3,
~~

21

1
0

 (
1

0
,1

1
)

2
1

9
 (

1
0

6
,3

6
8

)
21

9
(1

0
6

,3
6

8
)

7
.2

 (
5

,9
)

s
k

E
 {

1
,3

}

25

9
.9

 (
9

.7
,H

i)

5
5

4
 (

i8
7

,1
2

3
0

)
5

5
4

 (
i8

7
,1

2
3

0
)

9
.2

 (
5

,1
3

)
6

0

X
 4

0

3
0

3

7
 ~
36

,3
~~

19
0.
~~
9,
47
8!

1
9

0
,!

 4
9
,
4
7
~
L

4
.3

 P
,
l
~
!

4
0

3

5
 (

3
4

,3
6

)
3

0
6

6
 (

5
7

3
,1

3
5

2
3

)
3

0
6

6
 (

5
7

3
,1

3
5

2
3

)
8

.6
 (

6
,1

2
)

."
E

{
l,

2
,3

}

4
5

34

 (
3

3
,3

5
)

5
5

3
9

 (
i2

4
7

,1
7

3
3

3
)

5
5

3
9

 (
i2

4
7

,1
7

3
3

3
)

1
3

.0
'(

7
,2

i)

6
0

X

 4
0

3

3

3
7

 ~
37
,3
~l

1
2

7
 .
~5

8,
30

5)
,

1
2

7
 ,
~5

8,
30

5)
,

4.
1.

 (
?,

1
0

)
4

0

3
6

 (
3

5
,3

7
)

5
0

6
 (

2
6

7
,8

9
4

)
5

0
6

 (
2

6
7

,8
9

4
)

6
.8

 (
4

,9
)

s
k
 E

 {
1

,3
}

45

3

5
 (

3
5

,3
6

)
1

3
0

2
 (

4
9

2
,2

2
3

7
)

1
3

0
2

 (
4

9
2

,2
2

3
7

)
8

.2
 (

5
,1

2
)

3
0

X

 3
0

 .t
l,

 2
,
~
J

20

11
 ~

11
,1

1~

52
8,

 (
?5

7
,1

1
4

4
)

52
8.

 (,
25

7,
11

44
)

1
0

.5
 ~
7,

14
!

3
0

X

 3
0

 {
1

,3
}

2

0

11
 (

1
1

,1
1

)
44

0
(2

6
4

,6
4

0
)

4
4

0
 (

2
6

4
,6

4
0

)
1

0
.0

 (
7

,1
4

)
4

0
X

4
0

{
l,

2
,3

}

3
0

25

 (
2

4
,2

6
)

3
5

3
0

 (
1

6
2

9
,8

9
4

0
)

3
5

3
0

 (
1

6
2

9
,8

9
4

0
)

1
6

.7
 (

1
2

,2
1

)
40

X

 4
0

{
1

,3
}

3

0

25
 (

2
4

,2
5

)
2

1
0

4
 (

1
2

8
3

,2
8

9
4

)
21

04
 (

1
2

8
3

,2
8

9
4

)
1

5
.3

 (
1

1
,2

2
)

T
ab

le
 7

.6
 C

om
pu

ta
ti

on
 t

im
es

 a
nd

 s
iz

e
of

 p
ro

bl
em

s

'#
 c

o
lu

m
n

s
co

l.

g
en

.
in

st
a.

n
ce

s
5

13
 P
2
,
l
~
!

20
 (

1
7

,2
3

)
n

.a
.

8
F'

~!

1
5

 (
9

,2
0

)
n.

a.
.

43
 ~
28

,7
~!

5

0
 (

3
6

,7
9

)
5

4
 (

3
8

,8
7

}

3
0

 p
7
,
5
~
~

40
 (

2
7

,5
4

)
49

 (
2

0
,7

8
)

8
2

 (
4

6
,1

4
4

)
1

7
9

 (
1

4
6

,2
2

6
)

25
5

(2
2

5
,2

9
2

)
9

4
 ~
5
1
,
1
2
6
)

1
5

5
 (

1
1

0
,1

8
9

)
2

0
2

 (
1

4
9

,2
6

1
)

1
3

0
 .
~4

9,
27

6J
,

4
4

4
 (

3
3

8
,6

0
2

)
6

0
0

(4
5

6
,6

8
5

)
1

2
5

 ,
~5

3,
23

2J
,

25
3

(1
7

9
,3

7
2

)
38

1
(2

6
4

,5
2

1
)

21
1
p
2
5
,
2
8
~
!

1
9

5
 (

1
3

2
,2

4
2

)
3

6
7

 (
2

3
0

,4
3

9
)

3
1

6
 (

2
7

1
,3

8
8

)

#.
,m

a.
xl

m
a.

1
fe

a.
si

bl
e

co
lu

m
n

s
a.1

I
in

st
a.

n
ce

s
6

2
6

 ~
20

,2
~!

28

 (
2

1
,3

7
)

1
3

 (
7

,2
1

)
1

3
 ,
~6

,2
3)

,
29

 (
2

4
,3

4
)

25
 (

1
8

,3
0

)
1

2
2

 ~
5
7
,
2
1
5
l

1
6

3
 (

9
8

,2
5

0
)

1
4

8
 (

1
1

6
,2

1
3

)
70

, (
.5

5,
10

1)
,

1
0

9
 (

7
7

,1
4

9
)

1
4

6
 (

1
0

6
,1

8
6

)
2

3
0

 P
1

1
,4

0
7

)
1

4
3

2
 (

6
9

3
,2

5
8

1
)

5
4

9
0

 (
3

3
0

9
,8

6
6

9
)

27
4

(1
3

5
,4

2
5

)
9

6
8

 (
4

7
9

,1
6

4
9

)
2

8
0

2
 (

1
6

1
9

,5
0

5
3

)
2
8
5
1
.
!
4
3
0
,
9
6
0
~
L

2
7

6
4

8
 (

3
3

6
2

,1
1

2
8

7
6

)
8

2
6

1
1

 (
9

7
8

0
,3

6
2

5
1

7
)

13
12

.~
32

4,
26

4~
~

5
2

7
2

 (
1

1
9

2
,1

0
6

7
6

)
1

3
8

6
3

 '
(3

0
7

8
,2

7
9

5
5

)
2

2
8

6
 ~

 1
7

2
7

 ,2
86

~!

1
7

9
0

 (
1

1
8

7
,2

9
6

7
)

1
1

8
5

5
 (

8
5

3
7

,1
6

7
3

1
)

74
46

 (
4

3
9

9
,1

4
9

0
3

)

I

Cr
::l

(1
)

("
) .,.,.
 g" :'
l

t\
J
.

Q
'1

-
J

158 Chapter 7

7.3 Multiple machines

7.3.1 The joh grouping problem

In practice a flexible machine is likely to be part of a system of several
machines. Rajagopalan (1985) and Tang and Denardo (1988b) developed
models to describe "multiple machine" problems. In this section we consider
the job grouping problem for a number of identical machines, where each job
has to be processed by each machine. Early flexible manufacturing systems
consisted of different types of machines. Nowadays many machines and tools
have become so versatile that only one'type of CNC machine can be used
to produce a wide variety of part types (Hwang and Shogan, 1989). Many
FMSs are configured with a group of these general-purpose CNC machines
(Jaikumar, 1986; Jaikumar and Van Wassenhove, 1989) and a job entering
such a system is routed to one of the available machines. IT each job has to
be processed by only one machine, th.e single machine job grouping model
(see Chapter 6) can be used, extended by a final step in which the groups
are assigned to the different machines. However, other criteria like workload
balancing tend to become more important for these cases. This leads to a
different type of problems which we did not consider in this research. Thus,
we assume that each job has certain tool requirements on each machine.
These requirements are described by the tool-job "matrix" (akim), where
akim = 1 if tool k (k = 1, ... , M) is used for job i (i = 1, ... , N) on machine
m (m = 1, ... , V) and akim = 0 otherwise. We assume that each tool needs
1 slot in the tool magazine, and that all machines have the same capacity
C (the latter assumption is mostly for ease of notation, and can be easily
removed). The job grouping problem is to find a partition of the jobs into a
minimum number of groups, such that the jobs in each group do not require
more tools on each machine than can be stored in the tool magazine of the
machine. A set covering formulation (7.1) - (7.4) ofthe problem is still valid.
The columns in the formulation represent the groups that are feasible on all
machines.

7.3.2 Lower bounds via column generation

A lower bound can again be computed by solving the linear relaxation of the
formulation (7.1) - (7.4) using a column generation approach. However, a
different generation subproblem must now be solved in order to find columns
that can improve the solution value of (7.5) - (7.7). Indeed, the restrictions
(7.10) and (7.11) must be included for each machine (with Sk = 1 for all k),

Section 7.3 159

thus leading to the following formulation of the generation subproblem:

where

N

maximize LAiXi
i=l

subject to akimXi ~ Zkm

M

LZkm ~ C
k=l

Xi E {0,1}

Zkm E {O, I}

Xi = 1
=0

if job i is in group S,
otherwise,

for i = 1, ... , lV, and

(7.14)

i = 1, ... ,lVjk= 1, ... ,Alj

m= 1, ... ,V, (7.15)

m= 1, ... ,V, (7.16)

i=l, ... ,lV, (7.17)

k= 1, ... ,Aljm= 1, ... ,V, (7.18)

Zkm = 1
=0

if tool k is required by some job in S on machine m,
otherwise,

for k = 1, ... , Alj m = 1, ... , V. As previously, we solve this subproblem by
complete enumeration (see Section 6.2.3). The lower bounds LBFarley and
LBcG are defined as in Section 6.2.4.

7.3.3 Other lower bounds

The sweeping procedure can be adjusted as described by Tang and Denardo
(1988b). The concept of compatibility is changed for the "multiple ma­
chines" case. Two jobs are compatible if they form a feasible group on all
machines. A number of groups are sequentially created as follows. In each
step ofthe procedure, first a job (seed) is selected which is compatible with
the smallest number of other (not yet selected) jobs (in case of a tie the job,
for which the set of compatible jobs requires the smallest number of tools on
all machines is selected). Next, the seed along with all jobs which are com­
patible with it, are selected to form one group. The procedure is repeated
until all jobs have been selected. The number of groups so created, say L is
a valid lower bound for the job grouping problem. We also have the trivial
lower bound r AI j Cl. Combining this bound with L yields the lower bound
LBsw =max{fAljCl,L}.

160 Chapter 7

Another lower bound can be obtained in each step of the sweeping pro­
cedure by summing the number of groups already created by the procedure
and the lower bound maxmHI UiEI Timl/Cl}, where I is the set of "not yet
selected" jobs, and Tim is the set of tools needed for job i on machine m.
This procedure generates a sequence of valid lower bounds, the first of which
is equal to rM/Cl and the last of which is equal to L. We refer to this pro­
cedure as the "modified sweeping procedure". It yields a new lower bound,
equal to the maximum of the bounds in the sequence, which we denote by
LBMSW.

7.3.4 Upper bounds

The MIMU, MI, MU and Whitney and Gaul rules are changed by simply
adjusting the definitions of the parameters bi and ti introduced in Section
6.3.1. For a group S and a job i f/. S, !et
bi = the sum over all machines of the number of tools required by job i
ti = the sum over all machines of the number of tools required both by job
i and by some job already in S.
For the MIMU rule these changes have been described by Tang and Denardo
(1988b). The Rajagopalan rule (resp. Modified Rajagopalan-rule) is changed
similarly. For each machine m, each tool k receives a weight akm, defined
as ak was for the one machine case. Next the priority of job i is calculated
by summing the weights akm over all tools that must be added to the tool
magazine of machine m (resp. over all tools needed for job i on machine
m) when job i is assigned to the current group, and over all machines. Ra­
jagopalan (1985) also assigns weights to the different machines, based on
the ratio of the total number of tool slots needed for the jobs executed on
the machine to the capacity of the tool magazine. We decided to use equal
weights for all machines. The Marginal gain rule is defined as in the single
machine case. For all sequential heuristics the selection of the first job in
each group is also based on the cumulative measures mentioned above. All
set covering heuristics can also be used as described in Section 6.3.2.

7.3.5 Adjusting the column generation procedlJre

The generation subproblem has become more complicated. However, due to
our enumerative approach for solving the generation subproblem (see Section
6.2.3), only straightforward adjustments to the procedure are needed. The
column generation procedure is implemented as described in Section 7.2.5

Section 7.3 161

(see also Section 6.4).

7.3.6 Computational experiments

We generated two sets of random instances. The first set was generated in
the same way as the first set of Section 7.2.6. (and the first two sets of Sec­
tion 6.5.1), except that all tools require just one slot in the tool magazine
and each instance is described by V tool-job matrices. The values of M, N, C
and V, describing each instance type, are given in Table 7.7.

Problem size Cl C2 C3 V Min Max
MxN
10 x 10 4 5 7 3 1 3
10 x 10 4 5 7 5 1 3
15 x 20 8 10 12 -3 1 7
15 x 20 8 10 12 5 1 7
25 x 30 to 12 15 3 1 9
25 x 30 10 12 15 5 1 9
60 x 40 20 25 30 3 1 19
60 x 40 20 25 30 5 1 19

Table 7.7 Parameters of the first set of instances

The second set (see Table 7.8) consists ofinstances which have a block struc­
ture (that is, the tool requirements for subsets of jobs are interdependent)
similar to the instances of the second dataset of Section 7.2.6. (or the third
dataset of Section 6.5.1).

Problem size Ct V Min Max Minjob Maxjob
MxN
30 x 30 15 3 5 8 4 7
30 x 30 15 5 5 8 4 7
40 x 40 20 3 7 10 5 8
40 x 40 20 5 7 10 5 8
50 x 50 25 3 8 12 6 10
50 x 50 25 5 8 12 6 10

Table 7.8 Parameters of the second set of instances

162 Chapter 7

For these instances, the jobs are divided from the start in a number of
feasible subgroups. First, a number Nt is drawn uniformly between Minjob
and Maxjob, and for each machine a subset of C tools is drawn. Then,
the tool requirements on the different machines for the first Nt jobs are
generated using the same procedure as in Section 6.5.1, that is, making sure
that these jobs form a feasible group. When Nt jobs have been defined,
then the procedure is iterated to produce N2 , N3 , ••• additional jobs. The
process stops when it is not possible to create a new group with Maxjob
jobs. The last columns are filled independently of each other as for the first
set of instances. We considered two cases,' with resp. 3 and 5 machines (see
Table 7.7 and Table 7.8). For each instance type 10 instances were created
(Le. 30 or 50 tool-job matrices had to be generated for each instance type)
for a total of 300 instances.

7.3.7 Computational results

For a description of the software and hardware used we refer to Section
6.5.2. The results of tlre computational experiments are recorded in Tables
7.9, 7.10, 7.11 and 7.12. The description of these tables is similar to that
given in Section 7.2.7. (Table 7.9 (resp. 7.10, 7.11 and 7.12) corresponds to
Table 7.3 (resp. 7.4, 7.5 and 7.6)).

With the procedure sketched in Section 7.3.5. 296 out of 300 instances
were solved to optimality. Another 2 instances were solved to optimality by
using different parameters while for 2 instances a gap of one unit remained
between the best lower bound LBcG and the best known upper bound on
the solution value.

Table 7.9 shows that the lower bounds LBsw and LBMSW are only
sufficient for instances of type (M, N, Ct). The number of jobs in a group
for these instances is extremely small (lor 2). Table 7.10 shows that the
performance of the sequential heuristics gets worse for instances with larger
capacities. The MI and the Modified Rajagopalan rules outperform the
other rules, although the MIMU, Whitney and Gaul, MU and Marginal
gain rules give reasonable results. For the instances of the second set the
performance of the Rajagopalan and the Marginal gain rules is terrible; this
is certainly due to the nature of these rules, which select jobs having few
tools in common with the jobs already chosen in a group. The best heuristic
solution is in general very good, but for instances of type (M, N, C3) the gap
between heuristic and optimal solution value is often equal to 2 (see Table
7.10, column 9).

Section 7.3 163

Table 7.11 shows that nearly all instances of the first set (oftype (M, N, Ct»
can be solved in Step I of the procedure. For the remaining instances opti­
mality is reached in Step III in many cases (73 %). For 27 percent of the
instances Step N is necessary. Table 7.11 shows that for 3 instances addi­
tional variables of the last set covering formulation were forced to take 0-1
values to obtain an optimal solution, while 2 instances could not be solved
to optimality. For these instances the maximal gap between the lower bound
LBcG and the best known upper bound amounts to 1.19.

In Table 7.12 the computation times are given. It appears that only the
instances of type (M, N, C 3) of the first set and the instances of the second set
require much computational effort. But of course, these are the only really
large ones (see column 6). Column 6 also shows that the instances of the
first set are usually small. The instances of the second set are probably more
realistic. The number of calls to LINDO was considerable for some of these
instances (on average 8 - 19, but with peaks of 53). The number of columns
in the set covering formulation peaked at 453 for the instances of the second
dataset. For the 3-machine in~tances of type (M, N, C3) of the first set and
the instances of the second set the column generation approach proved to be
a helpful tool in decreasing the size of the set covering formulation. For the
instances of the second set the number of maximal feasible columns increased
by a factor 10 from instance type (30, 30, 15) to (50, 50, 25). The increases
in computation time were similar, but the number of columns in the LP
subproblems only grew by a factor of 3 to 4~.

164 Chapter 7

Lowerbounds
Instance type

OPT LBsw LBMSW LBcG
MxN C 1 2 3 4

10 X 10 4 7.5 0.0 (10) 0.0 (10) 0(10)
5 4.8 -1.9 (0) -1.3 (0) 0(10)

V=3 7 3.0 -1.0 (0) -1.0 (0) o (10)
10 X 10 4 9.1 0.0 (10) 0.0 (10) 0(10)

5 5.0 -1.4 (0) -1.1 (1) 0(10)
V=5 7 3.0 -1.0 (0) -1.0 (0) o (10)

15 X 20 8 14.8 0.0 (10) 0.0 (10) o (10)
10 7.6 -3.1 (0) -3.0 (0) o (10)

V=3 12 4.8 -2.7 (0) -2.7 (0) o (10)
15 X 20 8 18.4 0.0 (10) 0.0 (10) o (10)

10 9.3 -3.0 (0) -2.8 (0) o (10)
V=5 12 5.3 -3.2 (0) -3.2 (0) o (10)

25 X 30 10 21.8 -0.3 (7) -0.2 (8) o (10)
12 13.6 -2.7 (0) -2.6 (0) o (10)

V=3 15 8.6 -6.2 (0) -5.8 (0) o (10)
25 X 30 10 25.9 -0.1 (9) 0.0 (10) o (10)

12 15.5 -2.2 (4) -2.0(4) 0(10)
V=5 15 9.5 -6.7 (0) -6.3 (0) 0(10)

60 X 40 20 29.2 -0.1 (0) -0.1 (9) o (10)
25 17.1 -11.2 (0) -11.2 (0) o (10)

V=3 30 12.2 -8.5 (0) -8.3 (0) o (10)
60 X 40 20 35.5 -0.1 (9) -0.0 (10) o (10)

25 19.8 -10.7 (0) -10.7 (0) o (10)
V=5 30 13.8 -9.6 (0) -9.4 (0) o (10)

30 X 30 V = 3 15 7.1 -5.1 (0) -5.0 (0) o (10)
40 X 40 V = 3 20 7.9 -5.9 (0) -5.9 (0) o (10)
50 X 50 V = 3 25 8.3 -6.3 (0) -6.3 (0) o (10)
30 X 30 V = 5 15 7.4 -5.1 (0) -5.1 (0) 0(10)
40 X 40 V = 5 20 7.9 -5.9 (0) -5.9 (0) ,0 (10)
50 X 50 V = 5 25 8.5 -6.5 (0) -6.5 (0) o (10)

Table 7.9 Quality of lower bounds

Section 7.3 165

Upper bound.

lns~ance ~yp. OPT MIMU MI MU Whi~. Raj ago- Mod. Marg. Be.~

+ Gaul pa.1an Raj. gain
MXN 1 2 3 4 5 & 1 S 9

10 x 10 4 1.5 0.0 (10! 0.0. (}~) 0.0, (}~) 0.0.(,10) 0.2 ~~~ 0.0, (}~) 0.0. (}O! 0.0, (}O)
5 4.S 0.~/9;) 0.3m 0.4 (Sl) 0.3 (9) 0.& (&) 0.3 (9) 0.3 (9) o.~ lSi) V=3 1 3.0 0.0 10 0.1 9 0.0 (io 0.0 (iO) 0.2 (S) 0.0 (iO) 0.1 (9) 0.0 10

10 x 10 4 9.1 0.0, (}O! 0.0, \}~) 0.0 (1~! 0.0, (}o,) 0.0, (}?,) 0.0. (}o,) 0.0, (}O) 0.0, (,I 0)
5 5.0 0.4 (9) 0.5 (8) 0.3 (10) 0.4 (9) 0.& (1) 0.5 (S) 0.4 (9) 0.3 (1)

V = 5 1 3.0 0.0 (iO) 0.0 (iO) 0.1 '(9) 0,.1 (9) 0.& (4) 0.0 (iO) 0.4 (&) 0.0 (iO)
15 X 20 S 14.8 0.2, (}O) 0.2 ~1~1 0.4 ~~1 0.3. ~~l 0.3 ~~l 0.2 S~~l 0.4 S~l 0.2 S~l

10 1.& 0.8 (8) 0.6 (10) 1.1 (5) 0.1 (9) 1.9 (0) 0.& (10) 1.& (2) 0.& (4)
V - 3 12 4.8 0.5 (9) 0.5 (9]' 0.6 (8) 0.& (S) 1.S (2) 0.6 (S) 1.0 (4) 0.4 (5)

15 x 20 8 18.4 0.2 \~~ O.q, (}~) 0.2 ~~~ 0.1 ~!~ 0.0, (,I?! 0.0. (}o,) 0.0, (}O! 0.0, (}O!
10 9.3 O.S (6) 0.5 (9) 1.2 (3) 0.7 (7) 1.1 (3) 0.5 (9) 1.1 (5) 0.4 (5)

V=5 12 5.3 0.9 (6) 0.8 (1) 1.1 (4) O.S (1) 1.8 0) 1.1 (4) 1.3 (3) 0.5 (5)
25 X 30 10 21.S 0.3 ~~! 0.3 ~~l 0.& ~~l 0.41:1 0.1

:~ 0.3 ~!1 0.3 ~~l 0.1 ~~1
12 13.6 1.S (3) 1.2 (S) 2.0 (3) 1.& (5) 1.6 1.2 (8) 1.8 (3) 1.0 (2)

V =3 15 8.6 1.2 (1) 1.1 (S) 1. 7 (3) 1.4 (5) 2.5 0) 1.4 (5) 2.0 (D) 0.9 (I)
25 X 30 10 25.9 0.1 \9) 0.0, (}o,) 0.1 \;1 0.0 (10) 0.0 (10) 0.0, (}o,) 0.1 \~) 0.0, (}O!

12 15.5 1.0 ~:~ ~:~m_ 1.1 (3) 0.9m O's·m 0.5m 1.2 m 0.4m
V =5 15 9.5 1.6 6 1.9 (4) 1.5 7 3.0 0 1.5 6 2.4 a 1.1 1

60 X 40 20 29.2 0.5 F) 0.3 ~~~ 0.6 (6) 0.3 (9) 0.4 (~~ 0.3 (~~ 0.4 ~S) 0.2 (9)
25 11.1 2.4 ~~) 1. 7 (S) 3.2 (1) 2.7 (3) 1.9 (1) 1.8 (1) 2.3 (3) 1.5 (0)

V =3 30 12.2 2.3 6) loS (iO) 2.9 io 2.2 (7) 2.9 (1) 1.9 (9) 2.8 (I) 1.8 (0)
60 X 40 20 35.5 0.2 S!l 0.1 S~l 0.2 (~l 0.2 ~~l 0.1 ~~l 0.1 \~l 0.1 \~l 0.0,(,10)

25 19.8 1.9 (1) 1.2 (6) 2.2 (1) 1.9 (2) 0.9 (9) 1.2 (6) 1.5 (4) 0.8 (3)
V =5 30 13.8 2.5 (3) 1.9 (9) 2.S (2) 2.5 (3) 2.1 (2) 1.S (iO) 2.S (2) 1.S (0)

30X30V-3 15 7.1 0.5 \~l 0.5 \~~ 0.7 (~~ 0.5 \!~ 5.4 \~l 0.4, \}~) 3.4 \~~ 0.4 E~
30x30V=3 20 7.9 0.4 (8) 0.4 (8) 0.4 (~l 0.5 (1) 1.9 (0) 0.4 ~~) 4.9 (0) 0.2 (S)
40x40V=3 25 S.3 1.4 (4) 1.1 (1) 1.4 (4 1.2 (6) 9.5 (0) 0.9 9) 5.9 (0) 0.8 (3)
40X40v-5 15 1.4 0.7 \!l 0.6 S~l 0.1 \!l 0.5.(,lo.} 6.8 ~~l 0.6 ~~1 4.0 ~~l 0.5 ~~l
40x40V=5 20 1.9 0.7 (8) 0.6 (9) 0.7 (9) 0.7 (S) 9.5 (0) 0.6 (9) 4.6 (0) 0.5 (5)
40X40V=5 25 S.5 1.0 (S) O.S (10) 1.0 (S) O.S (10) 10.3 (0) O.S_Lio) 5.9 (1) 0.8 (4)

Table 7.10 Quality of upper bounds

166 Chapter 7

Instance type II Slep I Slep II Slep III Slep III Slep IV Slep IV Gap
lJ:£N (;'11 CG IP A B

10 X 10 4 10
5 8 2

V-3 7 10
10 X 10 4 10

5 7 2 1
V=5 7 10

15 X 20 8 8 2
10 4 4 2

V-3 12 5 4 1
15 X 20 8 10

10 5 2
2?1)

1
V-5 12 5 2

25 X 30 10 7 2 1
12 2 5 3

V-3 15 1 1 7(1)
25 X 30 10 10

12 2 4 3 1
V-5 15 1 9

60 X 40 20 8 1 1
25 6 4

V-3 30 1 9
60 X 40 20 10

25 3 7
V - 5 30 1 6 3

30 X 30 V _ 3 15 7 2 1
40 X 40 V = 3 20 8 2
50 X 50 V - 3 25 3 6 1
30 X 30 V _ 5 15 5 5
40 X 40 V = 5 20 5 5
50 X 50 V - 5 25 + 5 4 1

II All Instances II 75 I 0 (+ 1) I 101 64 I 53 (2) I 3 2 II

Table 7.11 Performance of different steps of the column generation
procedure

C
o

m
p

u
t .

. t
Io

n
 t

im
e
 (

m
 s

ec
o

n
d

s)

In
st

 ..
 n

ce
 t

y
p

e

H
eu

T
ls

tI
cs

S

te
p

s
I-

IV

S
te

p
 I

-I
V

It
er

 ..
 tI

o
n

s
'IF

 c
O

lu
m

n
a

..
 11

.. 1

1
co

l.

g
en

.
co

l.

g
en

.
co

l.

g
en

.
in

st
 ..

 n
ce

s
in

st
 ..

 n
ce

s
in

st
 ..

 n
ce

s
in

st
 ..

 n
ce

s
in

st
 ..

 n
ce

s
M

X
N

I

c.
;

1
2

3
4

5

1
0

X

 1
0

4

2
.1

 ~
2.

0,
2'

~l

2
.1

 ~
2.
0,
2.
~)

n
..

..

n
..

..

n
.a

.
5

1
.9

 (
1

.8
,2

.0
)

13
 (

6
.3

,2
0

)
1

3
 (

6
.3

,2
0

)
2

.5
 (

1
,4

)
1

7
 (

1
4

,2
1

)
V

=
3

7

1
.8

 (
1.

8,
1.

9)

2
6

 (
1

2
,4

0
)

2
6

 (
1

2
,4

0
)

4
.4

 (
2

,7
)

3
0

 (
2

2
,3

8
)

1
0

 X
 1

0

4
3

.3
 ~
~.

2,
3'

~l

3
.3

 ~
3.
2,
3.
~)

n
.a

.
n.

a.
.

n
..

..

5
3

.0
 (

2
.9

,3
.0

)
14

 (
8

.1
,2

4
)

14
 (

8
.1

,2
4

)
2

.2
 (

1
,4

)
1

5
 (

1
2

,1
8

)
V

=

 5
7

2
.7

 (
2

.7
,2

.8
)

2
4

 (
1

4
,4

0
)

2
4

 (
1

4
,4

0
)

3
.7

 (
2

,7
)

2
5

 (
1

9
,2

9
)

1
5

X

 2
0

8

11
 P

O
,l

1
)

15
 (

1
0

,3
7

!
3

0
 (

2
3

,3
7

)
3

.0
 ~
2,

4)

2
0

 (
1

9
,2

0
)

1
0

9

.7
 (

9
.6

,1
0

)
5

2
 (

2
7

,7
5

)
5

2
 (

2
7

,7
5

)
4

.6
 (

2
,8

)
5

2
 (

3
5

,6
8

)
V

=

 3
1

2

9
.1

 (
9

.0
,9

.2
)

1
6

6
 (

1
0

6
,3

0
9

)
1

6
6

 (
1

0
6

,3
0

9
)

5
.6

 (
4

,9
)

1
4

3
 (

1
1

7
,1

7
3

)
1

5

X
 2

0

8
1

8
 (

1
7

,1
8

)
18

 ~
17
,l
~l

n
..

..

n
..

..

n
..

..

1
0

1

6
 (

1
5

,1
6

)
49

 (
2

6
,8

5
)

49
 (

2
6

,8
5

)
3

.3
 (

1
,7

)
3

7
 (

2
9

,4
3

)
V

=

 5
1

2

14
 (

1
4

,1
5

)
1

6
0

 (
8

7
,3

1
3

)
1

6
0

 (
8

7
,3

1
3

)
4

.7
 (

3
,9

)
1

3
2

 (
9

7
,1

6
3

)
2

5

X
 3

0

1
0

3

7
 ~
~5
,3
~!

4
3

 t
,3

5,
60

},

59
,

t;
;9

,6
0}

,
2

.0
 ~
2,

~!

3
2

,t
?

7
,3

9
j,

1

2

3
4

 (
3

3
,3

5
)

11
1

(5
8

,6
4

)
11

1
(5

8
,6

4
)

4
.3

 (
2

,8
)

8
0

 (
4

1
,1

3
6

)
V

=
3

1

5

31
 (

3
0

,3
1

)
59

1
(2

1
3

,1
0

9
5

)
59

1
(2

1
3

,1
0

9
5

)
5

.9
 (

3
,8

)
2

7
8

 (
2

0
9

,4
1

9
)

2
5

X

 3
0

1

0

5
9

 ~
57
,6
~l

5
9

 ,
~5

7,
61

)
n.

a.
.

n.
a.

.
n

..
..

1

2

5
3

 (
5

2
,5

6
)

9
9

 (
5

4
,1

7
0

)
1

0
9

 (
7

2
,1

7
0

)
3

.4
 (

1
,5

)
48

 (
3

4
,7

3
)

V
=

3

1
5

5

0
 (

4
9

,5
1

)
5

0
4

 (
3

6
5

,7
2

9
)

5
0

4
 (

3
6

5
,7

2
9

)
5

.9
 (

4
,8

)
2

5
9

 (
1.

50
,3

84
)

6
0

X

 4
0

2
0

14

1
p
3
9
,
1
4
~
l

1
5

4
 ~
1
4
0
,
2
2
7
!

20
4
~!

82
,2

2:
!

3
.0

 ~
2,

~!

5
4

 ,1
..4

7,
60

)_

2
5

1

2
0

 (
1

1
9

,1
2

1
)

43
1

(2
6

6
,6

1
4

)
43

1
(2

6
6

,6
1

4
)

5.
1

(3
,8

)
1

7
3

 (
1

0
5

,2
5

2
)

V

=

 3
3

0

1
1

7
 (

1
1

6
,1

1
8

)
16

81
 (

9
6

3
,2

6
2

6
)

16
81

 (
9

6
3

,2
6

2
6

)
6

.6
 (

4
,8

)
4

8
0

 (
3

5
6

,6
2

6
)

6
0

X

 4
0

2
0

2

3
0

 ~
22
8,
23
~l

2
3

0
 ~
2
2
8
,
2
3
2
l

n
..

..

n
..

..

n
..

..

2
5

1

9
7

 (
1

9
2

,2
1

3
)

4
2

2
 (

2
4

8
,6

6
1

)
42

2
(2

4
8

,6
6

1
)

4
.0

 (
1

,7
)

9
9

 (
5

3
,1

4
7

)
V

=
5

3

0

19
1

(1
9

0
,1

9
3

)
1

3
4

3
 (

7
9

5
,1

7
4

4
)

1
3

4
3

 (
7

9
5

,1
7

4
4

)
5

.3
 (

3
,7

)
2

8
8

 (
2

2
1

,4
1

3
)

3
0

x
3

0
V

_
3

1

5

3
6

 ~
35
,3
~~

2
4

0
 {

1
4

9
,3

9
8

}

2
4

0
 ,
~1

49
,3

98
),

7

.9
.t

,5
,1

3
j,

1

1
4

 (
63

,2
5~

!
40

X

 4
0

V

=

 3
2

0

81
 (

8
0

,8
2

)
6

5
3

 (
3

6
0

,1
7

3
0

)
6

5
3

 (
3

6
0

,1
7

3
0

)
1

0
.7

 (
7

,3
0

)
1

5
8

 (
8

5
,2

3
6

)
5

0

X
 5

0
 V

=

 3
2

5

1
5

4
 (

1
5

2
,1

5
6

)
2

8
9

5
 '(

8
2

4
,7

8
6

7
)

2
8

9
5

 "
(8

24
,7

86
7)

1

8
.5

 (
7

,4
1

)
3

1
9

 (
2

0
5

,4
5

3
)

3
0

X

 3
0

 V

_
5

1
5

58

,1
..5

7,
59

j_

2
1

3
 ,
~1
31
,3
22
j,

2
1

3
 (

1
3

1
,3

2
2

)
8.

0.
 (

f,
1

5
)

6
3

 ~
 4

3
,1

0
7

)
4

0

X
 4

0
V

=

 5
2

0

1
3

2
 (

1
3

1
,1

3
3

)
71

0
(3

1
9

,1
7

9
3

)
71

0
(3

1
9

,1
7

9
3

)
1

1
.8

 (
7

,2
1

)
9

4
 (

4
8

,1
6

2
)

5
0

X

 5
0

 V

=

 5
2

5

2
4

9
 (

2
4

7
,2

5
1

)
3

2
7

4
 (

7
9

4
,1

0
3

8
6

)
3

2
7

4
 (

7
9

4
,1

0
3

8
6

)
1

6
.0

 (
8

,5
3

)
27

1
(1

4
3

,4
3

i)

T
ab

le
 7

.1
2

 C
om

pu
ta

ti
on

 t
im

es
 a

nd
 s

iz
e

of
 p

ro
bl

em
s

'IF
..m

 ..
 x

lm
 ..

 1
fe

 ..
 ai

b
le

 c
o

lu
m

n
a

a.
ll

in
st

 ..
 n

ce
s

6

9
~8
,1
~~

3
0

 (
2

5
,3

4
)

64
 (

5
7

,6
9

)
9

~8
,1

~~
,

2
6

 (
2

0
,3

4
)

6
7

 (
5

9
,7

7
)

26
 p
9
,
3
~
r

1
2

4
 (

9
7

,1
6

6
)

5
1

3
 (

3
8

8
,6

9
3

)
1

9
 (

1
7

,2
0

)
9

0
 (

7
6

,1
0

0
)

3
8

4
 (

3
0

6
 4

6
9

)
55

,1
..3

2,
7

9
j.

1

9
2

 (
1

1
0

,2
8

4
)

1
3

0
8

 (
6

4
6

,1
9

9
7

)
31

 ~
26
,3
~~

1
2

7
 (

6
9

,1
7

6
)

8
0

6
 (

4
4

5
,1

1
8

7
)

9
7

 ~
!0

,1
6~

L
5

1
5

 (
3

6
1

,8
7

6
)

2
8

9
8

 (
1

8
5

2
,4

9
5

3
)

4
5

,\
3

7
,5

6
)_

2

4
0

 (
1

8
9

,2
6

9
)

1
2

2
3

 (
8

6
0

,1
4

4
4

)

7
5

2
 (

4
9

7
,1

0
5

8
)

2
1

6
4

 (
1

6
5

5
,2

6
5

4
)

7
8

2
3

 (
6

2
3

0
,1

0
4

1
1

}

4
5

5
 ~
3
7
3
,
6
0
9
)

1
2

4
7

 (
9

4
4

,1
5

5
6

)
53

41
 (

4
2

6
7

,6
5

6
8

)

~

n g' ~

<:
,.,)

t-
'

0
)

-.
:J

168 Chapter 7

7.4 Other extensions

The extension of the job grouping problem to several non-identical machines
is similar to the one described in Section 7.3. It is also possible to combine
these changes for the case where jobs have to be processed on several non­
identical machines with tools that require one or multiple slots in the tool
magazines.

Rajagopalan (1985) and Hwang and Shogan (1989) discuss the introduc­
tion of due dates in the job grouping problem. Their models are sequential
by nature and concentrate on finding one batch (optimal with respect to
some "local" criterion) at a time. Due dates are incorporated by weighting
jobs: jobs which have tight due dates receive larger weights and thus higher
priority for being added to a next batch. By contrast the set covering formu­
lation aims at finding a minimal number of groups, with no decisions taken
on the order in which the groups have to be executed. Therefore the intro­
duction of due dates does not fit very well into this formulation. Similarly,
the introduction of order quantities or production times would change the
nature of the formulation. Because we should decide on the order in which
groups are executed, additional variables should be added to incorporate
this information. A possible change in this direction is the introduction of
separate weights for groups in different planning periods, where the weights
depend on the planning period (each group (column) should be available
in the formulation for each appropriate planning period). Additional con­
straints must then be added to the set covering formulation to prohibit that
more than one group be assigned to some planning period (or that a job
be executed more than once). The introduction of due dates also requires
the separate evaluation of small groups. Previously, we only had to consider
groups that were maximal (groups for which it is not possible to add jobs
without destroying feasibility). Now, we must explicitly consider all groups
that are not maximal, because different costs are attached to these smaller
groups (increases in setup time can be traded off against decreases in the
number of jobs that are overdue). As a result, the size of the formulation
grows sharply with the number of possible planning periods. This discus­
sion shows that the set covering formulation is probably not the right tool
to incorporate the introduction of due dates, production times and order
quantities, and therefore we did not further investigate these extensions.

Section 7.5 169

7.5 Summary and conclusions

In this study, the results of Chapter 6 have been extended to some special
cases of the job grouping problem. First, the job grouping problem was
considered in the case where tools need more than one slot in the tool mag­
azine. Next, the job grouping problem for several identical machines was
investigated. Lower and upper bounds were derived for these extensions. A
column generation approach was used to compute a lower bound. It appears
that the lower bound obtained by computing the LP-relaxation value of the
set covering formulation of the job grouping problem is very strong, though
not always optimal. This is the case for both extensions studied. For 2
percent of the instances tested, this lower bound was strictly smaller than
the best upper bound (gap equal to 1). In our computational experiments,
the "multiple slots" instances tend to be more difficult and the "multiple
machines" instances tend to be easier than the instances studied in Chapter
6.

Acknowledgments
We gratefully acknowledge useful discussions on the topic of this work with
Antoon Kolen. We thank Ron van der Wal for solving some problems using
a branch-and-bound procedure.

Chapter 8

A local search approach to
job grouping

8.1 Introduction

In Chapters 6 and 7, lower and upper bounding procedures were proposed
for the job grouping problem. It appeared that, in many cases, sequential
heuristic procedures were not sufficlent to provide an optimal solution. A
column generation approach was also developed to compute a strong lower
bound, based on the linear relaxation of the set covering formulation of the
job grouping problem. In the course of this procedure, it was sometimes
possible to derive improved upper bounds. Notice, however, that solving
the job grouping problem may be done faster if a better upper bound is
known from the start. For instance, execution of the column generation
procedure can be avoided if simple lower bounds like LBsw and LBMsw
(see Chapters 6 and 7) are optimal and an optimal upper bound is also
available. Alternatively, improved solutions provide additional columns to
be included in the set covering formulation, which may speed up the column
generation procedure.

Local search procedures may provide such improved solutions. Loosely
speaking, a local search procedure tries to improve the current solution of
a problem by searching the neighbourhood of that solution for improved
solutions, until no better solution can be found, optimality is achieved or
the procedure is stopped according to some other criterion. In this chapter,
we investigate four possible ways for searching the neighbourhood, namely a
simple improvement approach, a tabu search approach, a simulated annealing
approach and a variable-depth approach, based on ideas of Kernighan and
Lin (1970). For each of these methods three different objective functions
and two different neighbourhood structures are considered for two different
types of starting solutions. The environment in which these methods are
applied is discussed in the next section. Section 8.3 contains the description
of the methods. The results of our computational experiments are reported
in Section 8.4. In this study, we consider instances where tools require several
slots and instances with several machines. Some conclusions are drawn in
Section 8.5.

174 Chapter 8

8.2 Local search environment

Our objective is to partition the set of jobs into a minimal number of feasible
groups, where a group is called feasible if the tools needed for the jobs in the
group fit in the tool magazine of the machine(s). Our local search heuris­
tics are designed to solve this problem indirectly, by answering a sequence of
questions of the form: "Given a number g, is there a partition of the jobs into
at most g feasible groups?". This approach is motivated by the observation,
made in Chapters 6 and 7, that simple sequential heuristics provide good
estimates for the optimal number of groups. For most instances tested the
sequential heuristics provided a solution within 2 groups of the optimal solu­
tion. Therefore, the local search procedure can be applied to find a solution
which uses a number of groups equal to best known upper bound minus one.
IT a feasible solution is found the procedure is repeated for a smaller number
of groups. IT a solution is found with a!J.umber of groups equal to the lower
bound the procedure ends. IT we are not able to find a feasible solution for
the given number of groups, the procedure is started again with a different
starting solution. Other stopping criteria can be added to avoid endless runs.
In this section we will discuss the setting of different parameters that are
important for the execution of the local search procedures. All procedures
rely on the choice of a starting solution, an objective function f(G) which
evaluates the 'quality' of each solution G (consisting of g groups of jobs),
a neighbourhood structure defining what solutions are considered as neigh­
bours or perturbations of a given solution, and a stopping criterion. Before
discussing all these concepts in detail, we first present, for illustration, the
structure of an unsophisticated local search procedure to which we will refer
as the simple improvement approach. The other local search procedures can
be seen as variants of this basic strategy.

Section 8.2 175

Simple improvement approach (for finding a partition into g feasible
groups).

(Initialization) find a starting solution, i.e. a partition G = {GI, G2, ... , Gg }

(Improve) while G is not feasible and the stopping criterion is not satisfied
do
begin

end

select a neighbour of G, say G', which minimizes I(G') among
all neighbours;
if I(G') ~ I(G) and G' is not feasible
then return FAIL (G is an infeasible local optimum)
else let G := G'

(Termination) if G is feasible
then return G
else return FAIL (stopping criterion satisfied)

8.2.1 Starting solution

A local search procedure starts from a given partition of the jobs into 9
groups. This partition does not have to be feasible (if it is, we can stop the
local search procedure for this number of groups). In our implementation we
used two types of starting solutions, viz. the Maximal Intersection solution
and a random starting solution. The Maximal Intersection (MI) starting
solution is created using the Maximal Intersection rule for job grouping (see
Sections 6.3.1,7.2.4 and 7.3.4). Remember that this rule sequentially creates
a number of groups. Here, we run the procedure until 9 feasible groups are
formed. Then, the remaining jobs (that are npt (yet) assigned to some group)
are distributed to the already created groups. This is done in a greedy way.
The jobs are assigned to one of the 9 groups in an arbitrary order, so that the
sum of the violations of the tool magazine capacity constraint of the groups
is minimized in each step (see next section). A random starting solution is
created by assigning jobs randomly to 9 different groups. Some experiments
were carried out using another structured starting solution (based on the
Modified Rajagopalan rule, see Sections 6.3.1, 7.2.4 and 7.3.4), but these
experiments offered no improvement over the MI starting solution. The MI
starting solution was eventually preferred because the overall performance

176 Chapter 8

of the MI rule was better for the job grouping problem (see Chapters 6 and
7).

8.2.2 Objective function

We used one of several measures to judge the quality of a partition of the
jobs in a given number of groups.

• Minimize violations
The violation v(G) of a group G of jobs is defined as the difference
between the number of slots needed for the jobs in G and the capacity
of the tool magazine, if this difference is positive. The violation is zero
if the tools fit in the tool magazine. The value of our first objective
function is the sum of the violations of the groups. In case of several
machines, we consider the sum .pf the violations' over all machines.
More precisely, define
C = capacity of the tool magazine,
V = number of machines,
Tim = collection of tools necessary for job i on machine m,
Sk = number of slots necessary for tool k,
G = collection of groups (G= {Gt,G2 , ••• ,Gg }),

v(Gj) = violation of group Gj. Then the violation of group Gj(E G) is
v(Gj) = E~=l max {O,EkE{UieGjTim}Sk-C}. The objective function
to be minimized is h(G) = EGjEGv(Gj). A feasible solution is found
if the objective function is equal to 0. This approach is derived from
the approach of Chams, Hertz and de Werra (1987) for graph coloring.

• Minimize violations & maximize slack
Instead of only considering the violations, this objective function also
takes into account the slack-capacity (Le. the number of unused tool
slots) in a group. It can be improved by increasing the slackcapacity in
a group. IT 8j is the slack (8j = E~=l max {O, C - EkE{UieG .Tim} Sk}

J

in a group Gj E G, then the objective function to be minimized is
h(G) = EGjEG(C· v(Gj) - 8j).

• Maximize groupsize & minimize violations This objective function is
inspired from the objective function of Johnson, Aragon, McGeoch and
Schevon (1991) for graph coloring. The objective function is h(G) =
- EGjEG IGjI2+2EGjEG IGjl·v(Gj). When minimizing this function,

Section 8.2 177

the first term tends to favour large groups, whereas the second term
favours feasible groups.

8.2.3N eighbourhood structure

The neighbourhood structure defines the set of feasible moves from a certain
solution. We studied two different neighbourhood structures:

• Move and exchange Given a solution, a neighbour solution is created
by moving some job to another group or by exchanging two jobs. All
possible moves and exchanges are considered in each iteration. To
find a best move or exchange we visit all jobs consecutively. First, all
possible moves for a job are considered. Then, all pairwise exchanges
of the job with jobs in other groups are investigated. The best of these
moves and exchanges is selected .

• Move Given a solution, a neighbour solution is created by moving some
job to another group. We consider all moves for all jobs and select the
best one. Compared to the first neighbourhood structure, the pairwise
exchanges are not considered.

It is clear that the first neighbourhood structure uses more computation
time per iteration than the other neighbourhood structure. On the other
hand, the number of iterations to reach optimality will be decisive for the
actual computational effort. In some procedures, the neighbourhood struc­
ture will be restricted by disallowing some moves or exchanges (see Section
8.3 on tabu-lists).

8.2A Stopping criteria

The local search procedure stops if feasibility is achieved or the computation
time limit is reached. Use of a computation time limit is necessary to prevent
some local search procedures from running endlessly. At the end of each
step the solution is checked for feasibility since the values of the second
and the third objective function give no conclusive evidence of feasibility of
the solution. For some local search approaches (viz. the simple improvement
and the variable-depth approaches, see Section 8.3) the procedure is stopped
when no improvements are possible any more (the tabu search always has the
possibility to leave a local optimum, while the simulated annealing approach
only stops if repeatedly no suitable neighbour solution can be found after a

178 Chapter 8

large number of trials; see Section 8.3.3). For randomly generated starting
solutions an additional stopping criterion is added to allow testing of several
starting solutions within a fixed amount of computation time. Namely, only
a maximal number of steps can be performed from each starting solution,
after which the procedure is restarted with a new random starting solution
(here, a step is defined as a transition from one solution to another). In
our implementation the procedure was restarted after 3N steps, where N is
the number of jobs. This type of restart is not used with the MI starting
solution, which thus can use the full amount of computation time.

8.3 Local search approaches

Four different approaches have been considered. The simple improvement
approach only considers those moves which improve the solution at hand.
The second approach (tabu search) also accepts moves that give a deterio­
ration of the objective function. The third approach (simulated annealing)
introduces a stochastic element in accepting moves that worsen the objective
function value. In the fourth approach, ideas of Kernighan and Lin (1970)
are implemented.

8.3.1 Simple improvement approach

This approach has been formally described in Section 8.2. Given the neigh­
bourhood structure and the objective function, a move is accepted only if
it improves the objective function. If it is not possible to find an improve­
ment after all possible moves and/or exchanges have been considered the
procedure stops.

8.3.2 Tabu search approach

The simple improvement approach follows a so-called hill climbing (or better
valley seeking) approach for finding an optimum. The chances that the pro­
cedure gets stuck in a local optimum using the simple improvement approach
are considerable. To overcome this difficulty, the tabu search approach allows
moves that worsen the solution value. The idea is that accepting a number
of 'bad' moves may open up possibilities to move to another (better) lo­
cal optimum. The approach has achieved impressive practical successes for
other combinatorial problems; for a thorough discussion we refer to Glover
(1989; 1990). When it is not possible to find an improved solution among

Section 8.3 179

the neighbours of the current one, a move is chosen that is the best among
the 'bad' moves, that is a move that has the least impact on the value of the
objective function. To avoid returning to a recent local optimum a tabu-list
is used. More precisely, in our implementation, the tabu-list contains a list
of jobs that are not allowed to be transferred to another group. The tabu-list
may also contain a list of specified moves (in which explicitly the job, the old
and the new group are recorded) that are not allowed, but preliminary tests
showed no improvement over the current choice. We use a tabu-list oflength
7, which means that the last seven jobs that have been moved (in steps where
the objective function deteriorated) may not be moved again (preliminary
tests with a tabu-list of variable length - equal to !N, where N is the total
number of jobs - led to a significant deterioration of the performance of the
procedure). A move remains tabu only during a certain number ofiterations,
so that we have a cyclical list where the oldest forbidden move (or job) is
removed whenever a new forbidden move (or job) is added. The procedure
stops when a feasible solution is obtained or the computation time limit is
reached. To improve the performance of the procedure the concept of aspi­
ration levels is introduced (see Glover (1989». This offers the possibility of
overriding the tabu status of a job (or move) on the tabu-list if the solution
value which can be obtained by accepting this particular move is strictly
smaller than the best known solution value.

8.3.3 Simulated annealing approach

Simulated annealing extends the simple improvement approach by allowing
uphill moves during the minimization process, as in the tabu search approach
(for a discussion on simulated annealing we refer to Van Laarhoven and
Aarts (1987) and Johnson, Aragon, McGeoch and Schevon (1989; 1991».
However, the procedure of accepting uphill moves is randomized. If a move
or exchange is selected in an iteration and this move offers an improvement
of the objective function, the move is accepted. If it offers an increase of
the objective function by Ll, then the move is accepted with a probability of
e-A / T • The parameter T is· referred to as temperature and is an important
factor in the decision to accept uphill moves. If the temperature T is large,
the possibility of accepting 'bad' moves is large. Therefore, the temperature
is gradually decreased in the course of the procedure ('annealing'). The
behaviour of a simulated annealing implementation may be largely influenced
by the setting of certain parameters, like the initial temperature and the
cooling schedule. We used some suggestions of Johnson et al. (1989; 1991)

180 Chapter 8

in our choices for these parameters; these are now as follows. At the start
of the simulated annealing procedure T is fixed to some value Tstart = 4.
A number of iterations is carried out using this temperature. After maxiter
iterations have been performed at a certain temperature, the temperature
is decreased. The parameter maxiter is chosen proportional to the number
of jobs (N), viz. maxiter = 3N. The temperature T is decreased using
geometric cooling (the temperature in a next step is 95 % of the current
temperature). To limit the time spent at high temperatures we introduce a
parameter cutoff (= 0.3). This parameter makes sure that the temperature
T is decreased if too many moves are accepted. Thus, the temperature
is decreased either after maxiter moves or after cutoff X maxiter accepted
moves. Finally a parameter minpercent (= 2 %) is used as follows to decide
whether a simulated annealing run can be stopped. A counter is incremented
after each temperature change, if less than minpercent of the selected moves
have been accepted since the previous temperature change. The counter is
reset to 0 whenever the current best solution is improved. If the counter
reaches 5, the process is declared frozen and stopped (see Johnson et al.
(1989)). The procedure also stops if the computation time limit is reached.
Finally, we introduced a tabu-list to avoid the possibility of returning too
fast to an already visited local optimum. This tabu-list was implemented as
in the tabu search approach (see Section 8.3.2).

8.3.4 Variable-depth approach

Kernighan and Lin (1970) proposed an effective heuristic algorithm for the
graph partitioning problem. We use an idea similar to theirs. Each iteration
of our procedure consists of a number of steps. In each step, a move or
exchange is performed (the best one according to the given objective func­
tion and neighbourhood structure), and the jobs involved are placed on a
tabu-list of length N. After a number of steps, when all N jobs have been
moved once (and placed on the tabu-list), a sequence of solutions has been
obtained. From this sequence the best solution is chosen and a next iteration
is performed starting from this solution. At the start of each new iteration
all jobs are removed from the tabu-list (the tabu-list is emptied). The pro­
cedure is repeated until no improved solution can be found in an iteration
or the maximum amount of computation time is used.

Section 8.4 181

8.4 Computational experiments

Considering all combinations of two starting solutions, three objective func­
tions, two different neighbourhood structures and four local search approaches,
we get 48 possible implementations for a local search procedure (if we do
not vary the other parameters). In this section we first make a selection
among these methods, and then discuss the results of our computational
experiments with the 'best' ones.

8.4.1 The dataset

Computational experiments were performed on a set of problem instances
which emerged from the research described in Chapters 6 and 7. In these
chapters, computational experiments were performed on a large set of ran­
domly generated data (see Sections 6.6, 7.2_.7 and 7.3.7). From this set, we
selected a subset of instances for which the upper bounds computed by the
sequential heuristics were not optimal (it is clear that this is not a random
selection from the whole set of problems since all relatively easy instances
were left out). The smallest instances were also discarded and, for each in­
stance type (M,N,C) (where M is the number oftools, N is the number of
jobs and C is the capacity of the tool magazine), at most 5 problems were
retained. We investigated three types of instances:

• single slot, single machine instances,

• multiple slot, single machine instances,

• single slot, multiple machine instances.

The dataset we used is described in Table 8.1. In each row the parame­
ters for each instance type (M, N, C) are given: M, N, C, the number of
instances tested, the number of machines and the size of the tools. The up­
per part of Table 8.1 contains 45 instances of the single slot, single machine
type (dataset 1). Then, 46 instances are described where tool sizes are tool­
dependent (dataset 2). The last 54 instances are of the single slot, multiple
machine type (dataset 3A and 3B). The sequential heuristics provided solu­
tions close to optimality for all these instances (gap between upper bound
and optimal solution is 1 or 2). Therefore, we tested all our local search
heuristics by asking the question: "Is there a feasible solution involving ex­
actly OPT groups?", where OPT was the optimal value of the instance at
hand.

182 Chapter 8

Dataset Problem size C Number of Number of Number of
MxN instances machines slots per tool

single 10 X 10 4 5 1 1
slot 15 x 20 8 5 1 1

single 20 x 30 10 5 1 1
machine 25 x 30 10 5 1 1
dataset 1 40 x 30 25 5 1 1

60 x 40 30 5 1 1
40 x 40 20 5 1 1
50 x 50 25 5 1 1
60 x 60 30 5 1 1

multiple 15 x 20 13,15 5 1 1,2,3
slots 15 x 20 13,15 5 1 1,3

single 25 x 30 20 5 1 1,2,3
machine 25 X 30 25 4 1 1,3
dataset 2 60 x 40 40 5 1 1,2,3

60 x 40 45 5 1 1,3
30 x 30 20 3 1 1,2,3
30 x 30 20 5 1 1,3
40 x 40 30 4 1 1,2,3
40 x 40 30 5 1 1,3

single slot 15 x 20 12 4 3 1
3 machines 25 x 30 15 5 3 1
dataset 3A 60 x 40 30 5 3 1

30 x 30 15 3 3 1
40 x 40 20 2 3 1
50 x 50 25 5 3 1

single slot 15 X 20 12 5 5 1
5 machines 25 x 30 15 5 5 1
dataset 3B 60 x 40 30 5 5 1

30 x 30 15 5 5 1
40 x 40 20 5 5 1
50 x 50 25 5 5 1

Table 8.1 Dataset local search

Section 8.4 183

8.4.2 Computational results

The local search procedures were implemented in Turbo Pascal and run
on an AT personal computer with 16 MHz 80386sx processor and 80387
mathematical coprocessor (except for the results of Table 8.4; see below for
details).

The computational experiments were performed as follows. First, ex­
tensive computational experiments were performed on the first dataset for
a wide variety of implementations. The results of a number of approaches
that performed relatively well are presented in Table 8.2. For this selection
of approaches, additional experiments were performed on the instances of
the second and the third datasets (for the "multiple slots" and the "multiple
machines" instances).

The experiments on the first dataset were carried out with a 600 seconds
limit on the computation time. Each instance was tested for a given start­
ing solution, objective function, neighbourhood structure and local search
approach. When a random starting solution was used a number of restarts
was allowed within the given time period of 600 seconds (see Section 8.2.4).

Early tests showed that the simple improvement approach was dominated
strongly by the other local search approaches, and, therefore we did not
consider this approach any further. The lack of good results for this strategy
is probably due to the fact that the objective functions are such that the
possibility of getting stuck in local optima (minima) is indeed large if no
uphill moves are allowed.

The results for the other three local search approaches (Le. tabu search,
simulated annealing, variable-depth) did not diverge too much for a given
starting solution, objective function and neighbourhood structure. Table 8.2
gives the results of the computational experiments for the tabu search ap­
proach using the objective functions h(G),h(G),/a(G) defined in Section
8.2.2 and the neighbourhood structures "move and exchange" and "move"
described in Section 8.2.3. The second column of Table 8.2 indicates the
number ofinstances tested for each instance type (M, N) (5 for all instance
types). Each entry of the table consists in a pair" A - B", where A describes
the number of instances for which an optimal solution was found using the
MI starting solution and B describes the number of instances that was solved
using a random starting solution (possibly with multiple starts). The bot­
tom line of the table gives the cumulative results.

184 Chapter 8

Problem size # Move and exchange Move
MxN obj.1 obj.2 obj.3 obj.1 obj.2 obj.3

10 X 10 5 5-5 5-5 5-5 5-5 5-5 5-5
15 X 20 5 5-5 5-5 4-5 5-5 5-5 4-4
20 X 30 5 4-2 4-3 4-2 2-3 3-2 4-2
25 X 30 5 1-1 2-1 1-0 0-1 1-3 1-1
40 X 30 5 5-4 4-5 5-3 3-3 3-4 2-2
60 X 40 5 2-1 3-3 2-0 1-0 1-2 1-0
40 X 40 5 2-1 3-3 3-4 0-1 2-3 3-2
50 X 50 5 4-0 5-0 3-0 5-1 5-2 4-4
60 X 60 5 2-0 5-0 3-0 3-0 4-0 4-4

Total 45 30-19 36-25 30-19 24-19 29-26 28-24

Table 8.2 Results dataset 1: tabu search

The first two rows show that nearly all smaller instances can be solved by
the tabu search approach, independently of the neighbourhood structure or
the objective function. However, the results diverge for larger instances.
It appears that the use of a MI starting solution gives better results than
the implementation using a random starting solution. We come back to this
issue in the discussion of Table 8.4. The second objective function, including
the slacks, usually leads to the best results (an impression also confirmed by
our other experiments). The "move" neighbourhood provides slightly better
results than the "move and exchange" neighbourhood. This may be due to
the fact that the latter neighbourhood is computationally more expensive
to explore and can. perform fewer steps within a fixed time period. The
results show that even large instances can be solved to optimality using a
tabu search approach.

The trends discussed above for the tabu search approach have also been
observed for the simulated annealing and the variable-depth approach. We
do not give complete results for these two approaches, but limit ourselves
to some brief comments. The results of the simulated annealing approach,
though sometimes different for individual instances, are on average com­
parable to the tabu search results. The performance of the variable-depth
approach is somewhat weaker (especially for objective functions ft(G) and
h(G)), which may be due to the absolute stopping criterion used (see Sec­
tions 8.2.4 and 8.3.4). As an illustration of these comparisons, Table 8.3
reports on the results obtained by the three approaches on the first dataset,
when the objective function h(G) is used.

Section 8.4 185

Problem size # Tabu search Simulated Variable-
MxN Annealing depth

10 x 10 5 5-5 5-5 5-5
15 x 20 5 5-5 5-5 3-5
20 x 30 5 4-3 4-1 5-3
25 x 30 5 2-1 2-1 2-1
40 x 30 5 4-5 4-5 3-5
60 x 40 5 3-3 3-2 3-3
40 x 40 5 3-3 3-3 4-2
50 x 50 5 5-0 5-0 5-0
60 x 60 5 5-0 5~0 5-0

Total 45 36-25 36-22 35-24

Table 8.3 Selected results dataset 1

From these preliminary experiments, it appears that the objective function
h(G) combined with the "move" neighbourhood provides the best results.
For the variable-depth approach the more elaborate "move and exchange"
neighbourhood provides better results, which may again be related to the
influence of the stopping criterion (the time limit criterion is not often the
reason to cut off the variable-depth search). In the remainder of this section
we limit Qurselves to the discussion of the objective function h(G) combined
with the "move and exchange" or the "move" neighbourhood.

Table 8.4 displays the influence of computation time when using a ran­
dom starting solution within the tabu search framework, with the "move"
neighbourhood structure. Of course, we expect the tabu search approach to
give better results if the time limit is increased, but the extent of improve­
ment is not clear. These experiments were run on a faster computer (with 25
Mhz 80386 processor), approximately twice as fast as the previous one. For
each instance type (M, N), 5 instances were tested, and for each instance
25 random starting solutions were considered. Each column of Table 8.4
records the number of times (maximal 125) that an optimal solution was
obtained within the given time limit (resp. 1, 5, 15, 30, 60, 150, 300, 450
and 600 seconds).

The instances are roughly arranged by increasing size and the zeros in
the lower diagonal part of Table 8.4 speak for themselves. Table 8.4 shows
that the largest instances are indeed hard to solve using a random starting
solution, especially if this performance is compared to the results using a

186 Chapter 8

MI starting solution (see Table 8.2 for the occurrence of optimality within
600 seconds on the slower <.:omputer). One may consider these computation
times as very high, compared to the time it takes to solve similar instances to
optimality (see Table 6.6, Chapter 6). These experiments were also carried
out for the simulated annealing approach, with comparable results.

Problem size # II Cumulative # of instances solved to optimalty after
MxN 1115 s 30 s 60 s 150 s 300 s 450 s 600 s

10 x 10 5 125 125 125 125 125 125 125
15 x 20 5 41 83 97 104 107 109 110
20 x 30 5 0 0 16 59 73 75 78
25 x 30 5 1 1 8 34 48 50 55
40 x 30 5 0 2 43 107 118 122 122
60 x 40 5 0 0 0 2 64 77 84
40 x 40 5 0 0 0 22 79 85 93
50 x 50 5 0 0 0 0 8 54 97
60 x 60 5 0 0 0 0 0 0 1

Table 8.4 Results tabu search with random starting solution

In Tables 8.5 and 8.6, a further comparison is made between the three lo­
cal search approaches for the "multiple slots" and the "multiple machines"
instances. As mentioned before, we choose to present the results of imple­
mentations using the superior objective function h(G). Tests with the other
objective functions yield results that are in general worse than the results
obtained for this objective function, as previously illustrated in Table 8.2.

Table 8.5 displays the results for the "multiple slots" case (dataset 2).
In the third column of Table 8.5 the size of the tools is given. Because the
"multiple slots" instances are expected to be harder (see Chapter 7), the
time limit is increased from 600 to 900 seconds (on the 'slower' computer).
Objective function h(G) combined with the "move" neighbourhood struc­
ture form the best parameter set for the "multiple slots" instances. The
results obtained with a random starting solution are similar to those using
the MI starting solution if the tabu search or simulated annealing approach
is used. However, if the time limit stopping criterion is decreased from 900 to
600 seconds, the results for the random starting solution deterio- rate much
faster than for the MI starting solution. The total scores for the "move and
exchange" neighbourhood change from 33 - 29,33 - 35 and 22 -27 (see last
line of Table 8.5) to 33 - 24, 32 - 25, 22 - 25 if the time limit is set to 600
seconds. The influence of a time limit reduction is also present (though less

Section 8.4 187

significantly) in case of the "move" neighbourhood. Thus, it seems that the
relatively good results for the random starting solution are related to the
large time limit.

Problem size # . Sk E Tabu search Simulated Variable-
MxN Annealing depth

15 x 20 5 1,2,3 4-5 4-5 2-5
15 x 20 5 1,3 4-5 4-5 3-5
25 x 30 5 1,2,3 2-2 2-4 3-3
25 x 30 4 1,3 4-3 4-2 1-3
60 x 40 5 1,2,3 3-2 3-3 3-2
60 x 40 5 1,3 4-5 4-5 3-4
30 x 30 3 1,2,3 2-2 2-2 1-2
30 x 30 5 1,3 3-4 3-4 2-2
40 x 40 4 1,2,3 4-1 4-3 3-1
40 x 40 5 1,3 3-0 3-2 1-0

Total 46 33-29 33-35 22-27

Table 8.5 Results dataset 2

Table 8.5 also shows that the time limit of 900 seconds is probably not
enough for the largest instances in case of a random starting solution. The
performance of the variable-depth approach is systematically worse than
that of the other approaches if a MI starting solution is used. This may
be partly explained by the stronger stopping criterion adopted (12 out of
24 (resp. 28 out of 29) unsolved instances for the variable-depth approach
using a "move and exchange" (resp. "move") neighbourhood structure were
stopped before the computation time limit was reached). The influence of
the stopping criterion is largely decreased in case multiple random starts
are used. The results for the variable-depth approach are comparable to the
other results if a random starting solution is employed.

Table 8.6 records the results for the "multiple machines" instances (datasets
3 A & B). The computations were performed using a 900 seconds time limit
(in Chapter 7 it is shown that these instances are probably easier than those
ofthe second dataset; however, in each step ofthe local search approach more
function evaluations have to be made). The upper (resp. lower) part of Ta­
ble 8.6 presents results on "3 machines" (resp. "5 machines") instances. The
tabu search and simulated annealing approaches give similar results, with

188 Chapter 8

the variable-depth approach trailing behind. The tests using a MI starting
solution were more successful than those using a random starting solution,
which may indicate that the time limit was too low for randomly generated
starting solutions (compare with the results presented in Table 8.4). Nearly
all structured instances (of sizes (30, 30), (40,40) and (50, 50)) were solved
to optimality when a MI starting solution was used. The results were better
for the "moye and exchange" neighbourhood structure than for the "move"
neighbourhood structure in case a MI starting solution was used. For random
starting solutions the more time-efficient "move" neighbourhood structure
was more appropriate.

Problem size # V Tabu search Simulated Variable-
MxN Annealing depth

15 X 20 4 3 4-4 4-4 4-4
25 X 30 5 3 3-4 3-4 3-3
60x 40 5 3 2-1 2-0 1-1
30 X 30 3 3 3-3 3-3 2-3
40 X 40 2 3 2-0 2-1 2-0
50 X 50 5 3 5-0 5-0 5-0
15 X 20 5 5 5-5 5-4 3-3
25 X 30 5 5 4-4 4-4 1-2
60 X 40 5 5 0-0 0-0 0-0
30 X 30 5 5 5-5 5-5 5-5
40 X 40 5 5 5-0 5-0 5-0
50 X 50 5 5 4-0 4-0 4-0

Total 54 42-26 42-25 35-21

Table 8.6 Selected results dataset 3A and 3B

8.5 Summary and conclusions

In this chapter, we investigated the use oflocal search approaches to improve
the solution for the job grouping problem. Four local search approaches were
considered, namely simple improvement, tabu search, simulated annealing
and the variable-depth approach; for each of these methods, several starting
solutions, objective functions, neighbourhood structures and stopping crite­
ria were tested. Computational experiments using three sets of data seem to

Section 8.5 189

indicate that the latter choices considerably influence the performance of the
different approaches, while the influence of the specific local search approach
seems less serious as long as some kind of local optimum evading procedure is
used. The opportunity to leave local optima is particularly important given
the rigidity of some objective functions.

The differences in performance of the tabu search, simulated annealing
and variable-depth approach are relatively small for the job grouping prob­
lem. In some cases the results for the variable-depth approach are a bit
disappointing, but this may be partly related to the stopping criteria used
(that is, the variable-depth approach does not always benefit from additional
computation time as the other two approaches do). Local search approaches
are well known for their extensive use of computation time and, in this
study, they live up to this expectation. However, initial solutions are some­
times improved in a limited amount of time, especially for smaller instances.
The MI starting solution outperforms the random starting solutions in most
cases. Since the MI starting solution can be quickly obtained, we find it
advisable to use it as a starting point. The objective function h(G), which
combines minimizing the number of violations with increasing the slack in
groups that have spare capacity, seems to be the most adequate objective
function. Combined with either of the neighbourhood structures "move and
exchange" or "move", it provided good results for all three datasets con­
sidered. In conclusion, the experiments with local search approaches show
that these approaches can be helpful in finding improved solutions for the
job grouping problem. One important application coUld be the use of these
methods for improving the initial set covering formulation of the job group­
ing problem by a column generation approach, as described in Chapters 6
and 7.

Chapter 9

Minimizing the number of
tool switches on a flexible
machine

9.1 Introduction

A central problem of tool management for flexible machines is to decide
how to sequence the parts to be produced, and what tools to allocate to
the machine, in order to minimize the number of tool setups. The prob~
lem becomes especially crucial when the time needed to change a tool is
significant with respect to the processing times of the parts, or when many
small batches of different parts must be processed in succession. These phe­
nomena have been observed in the metal-working industry by Hirabayashi,
Suzuki and Tsuchiya (1984), Finke and Kusiak (1987), Bard (1988), Tang
and Denardo (1988a), Bard and Feo (1989), etc. Blazewicz, Finke, Haupt
and Schmidt (1988) describe for instance an NC-forging machine equipped
with two tool magazines, each of which can handle eight tools. The tools
are very heavy, and exchanging them requires a sizeable fraction of the ac­
tual forging time. Another situation where minimizing the number of tool
setups may be important is described by FOrster and Hirt (1989, p. 109).
These authors mention that, when the tool transportation system is used
by several machines, there is a distinct possibility that this system becomes
overloaded. Then, minimizing the number of tool setups can be viewed as
a way to reduce the strain on the tool transportation system. Bard (1988)
mentions yet another occurrence of the same problem in the electronics in­
dustry. Suppose several types of printed circuit boards (PCBs) are produced
by an automated placement machine (or a line of such machines). For each
type of PCB, a certain collection of component feeders must be placed on the
machine before boards of that type can be produced. As the machine can
only hold a limited number of feeders, it is usually necessary to replace some
feeders when switching from the production of one type of boards to that of
another type. Exchanging feeders is a time-comsuming operation and it is
therefore important to determine a production sequence for the board types
which minimizes the number of "feeder-setups". Identifying the feeders with
tools, we see that this constitutes again an instance of the "job-sequencing
and tool loading" problem evoked above.

This chapter deals with a particular formulation of this problem, due to
Bard (1988) and Tang and Denardo (1988a). Suppose that a batch of N
jobs have to be successively processed, one at a time, on a single flexible
machine. Each job requires a subset of tools, which have to be placed in the
tool magazine of the machine before the job can be processed. The number
of tools needed to produce all the jobs in the batch is denoted by M. We

194

represent these data by an M X N tool-job matrix A, with:

aij = 1 if job j requires tool i,
= 0 otherwise,

Chapter 9

for i = 1,2, ... , M and j = 1,2, ... , N. Without loss of generality, A has no
zero row. The tool magazine has a limited capacity: it can accommodate
at most C tools, each of which fits in one slot of the magazine. To ensure
feasibility of the problem, we assume that no job requires more than C
tools. We also assume that, while the jobs are in process, the tool magazine
is always loaded at full capacity (as will explained below, this is in fact a
non-restrictive assumption for our problem). We thus call any subset of C
tools a loading of the magazine.

A job sequence is a permutation of {I, 2, ... , N}, or, equivalently, of the
columns of A. As the number of tools needed to produce all jobs is generally
larger than the capacity of the tool magazine (Le., M > C), it is sometimes
necessary to change tools between two jobs in a sequence. When this occurs,
one or more tools are removed from the tool magazine and are replaced by
a same number of tools retrieved from a storage area. We call setup the
insertion of a tool in the magazine. A switch is the combination of a tool
setup and a tool removal. Since each tool has to be set up at least once in
order to process the whole batch of jobs, we will also pay attention to the
extra setups of a tool, that is, to all setups of the tool other than the first
one.

The tool switching problem is now defined as follows: determine a job
sequence and an associated sequence of loadings for the tool magazine, such
that all tools required by the j-th job are present in the j-th loading, and
the total number of tool switches is minimized. In matrix terms, the tool
switching problem translates as follows: determine an M X N 0 - 1 matrix
P = (Pkj), obtained by permuting the columns of A according to a given
job sequence, and an M X N 0 - 1 matrix T = (tkj) containing C ones per
column (each column of T represents a tool loading), such that tkj = 1 if
Pkj = 1 (Le., tool k is placed in the j-th loading if it is needed for the j-th
job in the sequence; k = 1, .. . M; j = 1, ... , N), and the following quantity
is minimized:

N M
L L(1- tk,j-l)' tkj
j=2 k=l

(this quantity is exactly the number of switches required for the loading
sequence represented by T). Observe that minimizing the number of tool

Section 9.1 195

switches is equivalent to minimizing the number of setups or of extra setups,
since the following relations hold:

number of setups = number of switches + C
= number of extra setups + M.

Let us now briefly discuss some of the (explicit and implicit) assumptions of
the tool switching model.

(1) As mentioned before, the assumption that the t()ol magazine is always
fully loaded does not affect the generality of the model. Indeed, since
no cost is incurred for tools staying in the magazine, one may consider
that the first C tools to be used are all incorporated in the very first
loading; thereafter, a tool only needs to be removed when it is replaced
by another one.

(2) Each tool is assumed to fit in one slot C?f the magazine. Removing this
assumption would create considerable difficulties. For instance the
physical location of the tools in the magazine would then become rele­
vant, since adjacent slots would need to be freed in order to introduce
a tool requiring more than one slot.

(3) The time needed to remove or insert each tool is constant, and is
the same for all tools. This assumption is in particular crucial for
the correctness of the KTNS procedure (see Subsection 9.2.2) which
determines the optimal tool loadings for a given job sequence. Many

. of our heuristic procedures, however, can easily be adapted in the case
where switching times are tool dependent.

(4) Tools cannot be changed simultaneously. This is a realistic assump­
tion in many situations, e.g. for the forging or for the PCB assembly
applications mentioned above.

(5) The subset of tools required to carry out each job is fixed in advance.
This assumption could be relaxed by assuming instead that, for each
job, a list of subsets of tools is given, and that the job can be executed
by any subset in the list; (Le., several process plans are given for each
job; see e.g. Finke and Kusiak (1987)). Choosing the right subset
would then add a new dimension (and quite a lot of complexity) to the
problem.

196 Chapter 9

(6) Tools do not break down and do not wear not. This assumption is
justified if the tool life is long enough with respect to the planning
horizon. Otherwise, one may want to lift the assumption "determinis­
tically" , e.g. by assuming that tool k is worn out after the execution of
Wk jobs, for a given value of Wk. Alternatively, breakdowns and wear
may also be modelled probabilistically. This would obviously result in
a completely new model.

(7) The list of jobs is completely known. This assumption is realistic if
the planning horizon is relatively short.

This chapter deals with various aspects of the tool switching problem. Sec­
tion 9.2 contains some basic results concerning the computational complexity
of this problem; in particular, we establish that the problem is already N'P­
hard for C = 2, and we present a new proof of the fact that, for each fixed job
sequence, an optimal sequence of tool loadings can be found in polynomial
time. In Section 9.3, we describe several heuristics for the tool switching
problem, and the performance of these heuristics on randomly generated
problems is compared in Section 9.4. Section 9.5 discusses, in general terms,
the difficult problem of computing good lower bounds for the optimal value
of the tool switching problem. The Appendix contains some graph-theoretic
definitions.

9.2 Basic results

We present in this section some results concerning the computational com­
plexity of the tool switching problem. We assume that the reader is familiar
with the basic concepts of complexity theory (see e.g. Nemhauser and Wolsey
(1988)). Let us simply recall here that, loosely speaking, a problem is N'P­
hru;d if it is at least as hard as the traveling salesman problem (see the
Appendix).

9.2.1 NP-hardness results

Tang and Denardo (1988a) claim that the tool switching problem is N'P­
hard. They do not present a formal proof of this assertion, but rather infer
it from the observation that the problem can be modelled, as a traveling
salesman problem with variable edge lengths. Our immediate goal will be
to establish the validity of two slightly stronger claims.
Consider first the following restricted version of the tool switching problem:

Section 9.2

Input : an M X N matrix A and a capacity C.
Problem PI : is there a job sequence for A requiring exactly M setups

(Le., no extra setups)?

Theorem 9.1 Problem PI is NP-hard.

Proof:

197

It is straightforward to check that PI is precisely the decision version of
the so-called matrix permutation problem, which has been extensively in­
vestigated in the VLSI design literature (see Mohring (1990) and references
therein). Several equivalent versions of the matrix permutation problem
have been shown to be NP-hard (see Kashiwabara and Fujisawa (1979),
Mohring (1990)), and hence PI is NP-hard. 0

In the description of problem PI, both A and C are regarded as problem
data. But, from the viewpoint of our application, it may also be interesting
to consider the situation where a specific machine, with fixed capacity, has to
process different batches of jobs. The matrix A can then be regarded as the
sole data of the tool switching problem. This observation leads us to define
the following problem, where C is now considered as a fixed parameter:

Input : an M X N matrix A.
Problem P2 : find a job sequence for A minimizing the number of setups

required on a machine with capacity C.

Theorem 9.2 Problem P2 is NP-hard for any fixed C ~ 2.

Proof:
Let G = (V, E, d) be a graph and H = (E, 1,0) be its edge-graph (see
the Appendix). We consider the problem of finding a minimal length T S
path in H (problem P3 in the Appendix). We are now going to prove
Theorem 9.2 by showing that this NP-hard problem can be formulated as
a special case of problem P2, for any fixed C ~ 2. For simplicity, we first
concentrate on a proof of Theorem 9.2 for C = 2. Let V = {I, 2, ... , M}
and E = {el, e2, ... , eN}. Define an M X N matrix A, with rows associated
to the nodes of G, columns associated to the edges of G, and such that:

aij = 1 if edge ej contains node i,
= 0 otherwise.

Consider now A as an instance of the tool switching problem, with capacity
C = 2. A job sequence for this problem corresponds to a permutation of E,

198 Chapter 9

and hence to a T S path in the edge-graph of G. Also, it is easy to see that
the number of tool switches between two jobs j and k, corresponding to the
edges ej and ek of G, is:

- equal to 1 if ej and ek share a common node, that is, if 6(ej,ek) = 1
in H;

- equal to 2 if ej and ek do not share a common node, that is, if
6(ej, ek) = +00 in H.

This discussion immediately implies that an optimal job sequence for A (with
capacity 2) always corresponds to a minimal length TS path in H. Hence,
we can solve P3 by solving P2, and this entails that P2 is NP-hard. To see
that Theorem 9.2 is also valid for C > 2, it suffices to adapt the definition
of A in the previous argument, by adding C -2 rows of 1 's to it; that is, A
now has (M + C - 2) rows, and aij = 1 if i~ M + 1. The reasoning goes
through with this modification. 0

9.2.2 Finding the minimum number of setups for a fixed job
sequence

The tool switching problem naturally decomposes into two interdependent
issues, namely:

(1) sequencing: compute an (optimal) job sequence, and
(2) tooling : for the given sequence, determine what tools should be

loaded in the tool magazine at each moment, in order
to minimize the total number of setups
required.

In th~ir paper, Tang and Denardo (1988a) proved that the sequencing sub­
problem actually is the hard nut to crack, since the tooling problem can
be solved in O(M N) operations by applying a so-called Keep Tool Needed
Soonest (KTNS) policy. A KTNS policy prescribes that, whenever a situa­
tion occurs where some tools should be removed from the magazine, so as
to make room for tools needed for the next job, then those tools which are
needed the soonest for a future job should be removed last (we refer to Tang
and Denardo (1988a) or Bard (1988) for a more precise desqiption).

Tang and Denardo's proof of the correctness of KTNS relies on ad-hoc
interchange arguments and is rather involved (as observed by Finke and
Roger - see Roger (1990) - the correctness of KTNS was already established

Section 9.2 199

by Mattson, Gecsei, Slutz and Traiger (1970) in the context of storage tech­
niques for computer memory, in the case where each job requires exactly one
tool; their proof is similar to Tang and Denardo's).

We now look at the tooling subproblem from a different angle, and show
that the problem can be modelled as a specially structured 0-1 linear pro­
gramming problem, which can be solved by a greedy algorithm due to Hoff­
man, Kolen and Sakarovitch (1985) (see also Nemhauser and Wolsey (1988),
pp. 562-573; Daskin, Jones and Lowe (1990) present another application
of the same greedy algorithm in a flexible manufacturing context). When
translated in the terminology of the tool switching problem, this algorithm
precisely yields KTNS. Thus, this argument provides a new proof of correct­
ness for KTNS.

The bulk of the work in our derivation of the KTNS procedure will simply
consist in reformulating the tooling problem in an appropriate form. With
this goal in mind, we first introduce some new notations and terminology.
For the remainder of this section, assume that the job sequence (7 is fixed.
Let the M x N(O, 1)-matrix P be defined by:

Pij = 1 if tool i is required for the j-th job in (7,

= 0 otherwise

(that is, P is obtained by permuting the columns of A according to the job
sequence at hand). A tooling policy can now be described by flipping some
entries of P from 0 to 1, until each column of P contains exactly C ones. IT
we denote by Cj the remaining capacity of column j, that is the quantity:

M

Cj = C - LPij
i=l

then a tooling policy must flip Cj entries from 0 to 1 in the j-th column of
P.

Let us next define a O-block of P as a maximal subset of consecutive zeroes
in a row of P. More formally, a O-block is a set of the form {(i,j), (i,j +
1), ... , (i, j + k)}, for which the following conditions hold:

(1) 1<j~j+k<N,

(2) Pij = Pi,j+! = ... = Pi,Hk = 0,

(3) Pi,j-l = Pi,Hk+1 = 1.

Intuitively, a O-block is a maximal time interval before and after which tool
i is needed, but during which it is not needed. It is easy to see that each

200 Chapter 9

O-block of P is associated with an extra setup of tool i. Thus, flipping an
element of P from 0 to 1 can only reduce the number of extra setups if this
element belongs to a 0-block, and if all other elements of this 0-block are
also flipped. In other words, only flipping whole O-blocks can help reducing
the number of setups.

Example 9.1 The matrix

[
0100 1

P= 1 1 0 0 0
1 0 l' 1 0

contains three O-blocks, namely {(1,3),(1,4)}, {(3,2)} and {(3,5)}. They
correspond to an extra setup of tool 1 in period 5, and two extra setups of
tool 3, in periods 3 and 6. Assume that the capacity is C = 2. Then, the
number of extra setups can be minimized by flipping the first and the third
0-blocks to 1, thus resulting in the mat.rix:

T=[~ ~ ~ ~ ~ ~l
101 1 1 1

o

From the previous discussion, it should now be clear that the tooling problem
can be rephrased as follows: flip to 1 as many O-blocks of P as possible,
while flipping at most Cj entries in column j (j = 1,2, ... , N).

Denote by B the number of 0-blocks in P, and, for k = 1, 2, ... , B,
introduce the decision variables:

Xk = 1 if the k-th O-block is flipped to 1,
= 0 otherwise.

For j = 1,2, ... ,N and k = 1,2, ... ,B, let also:

mjk = 1 if the k-th O-block "meets" column j in P,
= 0 otherwise

(formally, a O-block meets column j if it contains an element of the form (i,j),
for some i; for instance, in Example 9.1, the first O-block meets columns 3
and 4).

Section 9.2 201

Now, the tooling problem admits the following 0-1 linear programming
formulation:

B

(TP) maximize E Xk
k=l
B

subject to E mjkXk $ Cj,

k=l
Xk E {0,1},

j = 1,2, .. . ,N

Assume now that the O-blocks of P have been ordered in non-decreasing
order of their "endpoints": that is, the O-blocks of P have been numbered
from 1 to B in such a way that the index of the last column met by the k-th
0-block is smaller thaD. or equal to the index of the last column met by the
(k + 1)-st 0-block, for k = 1, ... , B - 1. Then, the matrix (mjk) is a so-called

greedy matrix, i.e. it does not contain the ~atrix [~ ~ 1 as a submatrix.

Hoffman et al. (1985) considered the following, more general problem on an
N x B greedy matrix:

B

(GP) maximize E bkXk

k=l
B

subject to E mjkXk $ Cj, j = 1,2, .. . N,
k=l
0$ Xk $ dk,Xk integer, k = 1,2, ... ,B,

where bk,dk (k = 1,2, ... ,B) and Cj (j = 1,2, ... ,N) are integers with
bl ;?: b2 ;?: ••• ;?: bB. They proved that, when the matrix (mjk) is greedy,
problem (GP) can be solved by a greedy algorithm, in which each Xk (k =
1,2, ... , B) is successively taken as large as possible while respecting the fea­
sibility constraints. Reformulating this algorithm for (TP), we see that we
should successively fiip O-blocks to 1, in order of nondecreasing endpoints,
as long as the remaining capacity of all columns met by the O-block is at
least one. We leave it to the reader to check that this procedure is precisely
equivalent to a KTNS policy.

Remark. In a more general situation where the setup times are not identi­
cal for all tools, the tooling subproblem can still be formulated as a problem

202 Chapter 9

of the form (G P), where bk is now the time required to set up the tool associ­
ated with the k-th O-block. Since the condition b1 ~ b2 ~ ••• ~ bB does not
generally hold for these setup times, the greedy algorithm of Hoffman et al.
(1985) and KTNS are no longer valid. However, the matrix (mjk), being an
interval matrix, is totally unimodular (see Subsection 9.3.4 and Nemhauser
and Wolsey (1988) for definitions). It follows that the tooling subproblem
can still be solved in polynomial time in that case, by simply solving the
linear programming relaxation of the formulation (G P).

9.3 Heuristics

The tool switching problem being NP-hard, and hence probably difficult
to solve to optimality, we concentrate in the sequel on heuristic techniques
for its solution. We propose hereunder six basic approaches, falling into
two main categories (we adopt the terminology used by Golden and Stewart
(1985) for the traveling salesman problem) :

- construction strategies, which exploit the special structure of the tool
switching problem in order to construct a single (hopefully good) job
sequence (Subsections 9.3.1 to 9.3.4 below);

- improvement strategies, which iteratively improve a starting job se­
quence (Subsections 9.3.5 and 9.3.6 below).

Composite strategies will be obtained by combining construction and im­
provement procedures. A computational comparison of the resulting proce­
dures will be presented in Section 9.4.
As explained in Section 9.1, the data of our problem consist of an MxN tool­
job matrix A and a capacity C. We focus on the solution of the sequencing
subproblem (see Subsection 9.2.2), since we already know that the tooling
subproblem is easy to solve. Whenever we speak of the cost of a (partial)
job sequence, we mean the minimal number of tool switches required by the
sequence, as computed using KTNS.

9.3.1 Traveling salesman heuristics

These heuristics are based on an idea suggested by Tang and Denardo
(1988a). They consider a graph G = (V,E,lb) (see the Appendix for def­
initions), where V is the set of jobs, E is the set of all pairs of jobs, and
the length lb(i,j) of edge {i,j} is an underestimate of the number of tool

Section 9.3 203

switches needed between jobs i and j when these jobs are consecutively
processed in a sequence. More precisely:

Ib(i,j) = max(ITi U Tjl- C,O),

where Tk is the set of tools required by job k (k = 1,2, .. . ,N). Notice that,
if each job requires exactly C tools (Le. ITkl = C for all k), then Ib(i,j) is
equal to the number of tool switches required between jobs i and j in any
schedule.

Each traveling salesman (TS) path of G corresponds to a job sequence for
the tool switching problem. So, as suggested by Tang and Denardo (1988a),
computing a short TS path in G constitutes a reasonable heuristic for the
generation of a good sequence. As a matter of fact, when all jobs use full
capacity, then the tool switching problem is precisely equivalent to the TS
problem on G.

In our computational experiments, we h~ve considered the following pro­
cedures for constructing a short TS path in G:

(1) Shortest Edge heuristic: this is the heuristic used by Tang and Denardo
(1988a), and called "greedy feasible" in Nemhauser and Wolsey (1988);
complexity: O(N 2 10g N);

(2) Nearest Neighbor heuristic with all possible starting nodes: see Golden
and Stewart (1985), Johnson and Papadimitriou (1985); complexity:
O(N3);

(3) Farthest Insertion heuristic with all possible starting nodes: see Golden
and Stewart (1985), Johnson and Papadimitriou (1985); complexity:
O(N4);

(4) B & B algorithm: this is a state-of-the-art branch and bound code,
which solves TS problems to optimality: see Volgenant and Jonker
(1982); complexity: exponential in the worst-case.

Procedures (1), (2) and (3) are well-known heuristics for the traveling sales­
man problem. In addition to the complexity mentioned for each procedure,
an overhead of OeM N 2) operations has to be incurred for the computation
ofthe edge lengths Ib(i,j).

204 Chapter 9

9.3.2 Block minimization heuristics

We describe now another way of associating a traveling salesman instance
to any given instance of the tool switching problem. We first introduce a
directed graph D = (V*, U, ub). Here, V* is the set of all jobs, plus an
additional node denoted by o. Each ordered pair of nodes is an arc in U.
The length ub(i,j) of arc (i,j) is given by:

where Tk is the set of tools required by job k (k = 1,2, ... ,N), and To
is the empty set. In other words, ub(i, j) is the number of tools used by
job i but not by job j; hence, ub(i,j) is an upper-bound on the number
of tool switches between jobs i and j, for any sequence in which i and j
must be consecutively processed. H every job requires exactly C tools, then
ub(i,j) = ub(j, i) = lb(i,j) is equal to the number of switches between i and
j. But in general, ub(i,j) differs from ub(j,i).

Each TS path of D finishing at node 0 defines a sequence of jobs, and
the length of the path is an upper-bound on the total number of switches
entailed by the sequence. For reasons explained below, we refer to heuristics
which attempt to construct a short TS path in D as block minimization
heuristics. We have implemented two such heuristics:

(1) NN Block Minimization, based on a nearest neighbor heuristic with all
, possible starting nodes; complexity: O(N3);

(2) FI Block Minimization, based on a farthest insertion heuristic with all
possible starting nodes; complexity: O(N4).

Let us mention another interesting interpretation of the block minimization
approach. As in Subsection 9.2.2, consider the matrix P obtained after
permuting the columns of A according to a job sequence u. We'define a
l-block of P as a set of entries, of the form {(i,j), (i,j + 1), ... , (i,j + k)},
for which the following conditions hold:

(1) l$,j$,j+k$,N,

(2) Pij = Pi,j+! = ... = Pi,j+k = 1,

(3) either j = 1 or Pi,j-l = 0,

(4) either j + k = N or Pi,j+k+! = 0

Section 9.3 205

(this definition does not exactly mimic the definition of O-blocks, but the
difference is irrelevant here). Notice that, were it not for the possibility to
carry out KTNS on P, then each 1-block of P would induce a tool setup in
the job sequence (1. Thus, the number of 1-blocks of P is an overestimate of
the number of setups required by (1.

We leave it to the reader to check that the number of 1-blocks in P is
also equal to the length of the TS path associated with (1 in D (and finishing
at node 0). So, finding a shortest TS path in D is equivalent to determining
a permutation of the columns of A which minimizes the number of 1-blocks
in the permuted matrix. This observation is essentially due to Kou (1977).
Kou (1977) also proved that finding a permutation which minimizes the
number of 1-blocks is NP-hard (our proof of Theorem 9.2 establishes the
same result). This justifies the use of heuristics in our block minimization
approach.

9.3.3 Greedy heuristics

One of the obvious drawbacks of the heuristics described in Subsections 9.3.1
and 9.3.2 is that they do not take a whole job sequence into account when
estimating the number of tool switches required between pairs of jobs. For
instance, Ib(i,j) is in general only a lower-bound on the actual number of
switches between jobs i and j, and this lower-bound can sometimes be a
quite poor estimate of the actual value. An extreme case would arise when
no job requires more than C /2 tools; then, lb(i, j) = 0 for each pair (i, j),
and any traveling salesman heuristic based on these edge-lengths picks a
random job sequence! Similarly, ub(i,j) can also be a rough upper-bound
on the number of switches required. In order to alleviate this difficulty, we
propose now the following (Simple) Greedy heuristic:

Step 1 start with the partial job sequence (1 = (1); let Q = {2,3, .. . ,N}.

Step 2 for each job j in Q, let c(j) be the cost of the partial sequence ((1,

j) (i.e., the number of tool switches entailed by this partial
sequence, disregarding the remaining jobs).

Step 3 let i be a job in Q for which c(i) = minj€Qc(j); let (1 := ((1, i) and
Q := Q\{i}.

Step 4 if Q is not empty, then repeat Step 2; else, stop with the complete
sequence (1.

206 Chapter 9

Greedy runs in time O(MN3), since it requires O(N2) applications of the
KTNS procedure (in Step 2). Its empirical performance can be slightly
improved by taking advantage of the fact that all the partial sequences con­
sidered in Step 2 share the same initial segment.

Of course, there is no mandatory reason to select job 1 first in Step 1
of Greedy, rather than any other job. This observation suggests to consider
the following, more elaborate Multiple-Start Greedy heuristic: run N times
Greedy, once for each initial sequence (T. = (j) (j = 1,2, ... , N), and retain
the best complete sequence found. This heuristic clearly dominates Greedy,
in terms of the quality of the job sequence that it produces. Its worst-case
complexity is O(MN4).

As a final note on this approach, it may be interesting to observe that,
if each job requires exactly C tools, then Multiple-S~art Greedy is identical
to the TS Nearest Neighbor heuristic (Subsection 9.3.1) or to the NN block
minimization heuristic (Subsection 9.3.2).

9.3.4 Interval heuristic

In order to motivate our next heuristic, let us first consider a special sit­
uation: assume that the matrix P arising by permuting the columns of A
according to some sequence (T has precisely one 1-block in each row. In other
words, the ones in each row of P occur consecutively. When this is the case
we say that A is an interval matrix (or that A has the consecutive ones
property; see e.g. Fulkerson and Gross (1965), Booth and Lueker (1976),
Nemhauser and Wolsey (1988». Then, the job sequence (T requires only one
setup per tool, and is obviously optimal.

Thus, every M X N interval matrix admits an optimal sequence with
M setups. Moreover, given an arbitrary matrix A, one can decide in time
OeM N) whether A is an interval matrix, and, in the affirmative, one can
find within the same time bound a sequence entailing M setups for A (Booth
and Lueker (1976» (notice that this does not contradict Theorem 9.1: by
applying KTNS, a sequence with M setups can sometimes be found for non­
interval matrices). On the other hand, it is by no means clear that any of
the heuristics described in Subsections 9.3.1, 9.3.2 or 9.3.3 would find an
optimal job sequence for an interval matrix.

These observations suggest the implementation of the following Interval
heuristic. The heuristic simultaneously builds a "large" interval submatrix of
A, and computes an optimal job sequence for the submatrix. This sequence
is the solution returned by the heuristic. More precisely:

Section 9.3 207

Step 1 initialize I = {}, i = 1.
Step 2 determine whether the submatrix of A consisting of the rows with

index in I U {i} is an interval matrix; if so, then let I := I U {i}
and let (F be an optimal job sequence for the submatrix;
else, continue.

Step 3 if i < M, then let i := i + 1 and go to Step 2; else, continue.

Step 4 return the last job sequence found; stop.

The Interval heuristic has the attractive property that it produces an optimal
job sequence for every interval matrix. The complexity of the heuristic
is O(MN) if the algorithm by Booth and Lueker (1976) is used. In our
implementation, we have used a slower, but simpler recognition algorithm
for interval matrices, due to Fulkerson and Gross (1965).

In the following subsections, we concentrate on improvement strategies.
The input for each procedure is some initial job sequence (F, that we subse­
quently attempt to improve in an iterative way.

9.3.5 2-0pt strategies

This class of strategies is based on an idea that has been widely used for other
combinatorial optimization problems: given a sequence (F, try to produce a
better sequence by exchanging two jobs in (F (if i is the k-th job and j is the
p-th job in (F, then exchanging i and j means putting i in p-th position and
j in k-th position). We have considered two versions of this basic approach.
The first one, called Global 2-0pt, can be described as follows:

Step 1 find two jobs i and j whose exchange results in an improved
sequence; if there are no such jobs, then return (F and stop;
else, continue.

Step 2 exchange i and j; call (F the resulting sequence;
repeat Step 1.

Global2-0pt has been proposed by Bard (1988) for the tool switching prob­
lem. Notice that each execution of Step 1 requires O(N2) applications of
KTNS, i.e. O(MN3) operations. But the number of potential executions of
this step does not appear to be trivially bounded by a polynomial in Nand
M (contrary to what is claimed by Bard (1988». In order to reduce the
computational effort by iteration of Global 2-0pt, the following Restricted
2-0pt procedure can also be considered:

208 Chapter 9

Step 1 find two consecutive jobs in u, say the k-th and (k + l)-st ones,
whose exchange results in an improved sequence;
if there are no such jobs, then return u and stop.

Step 2 exchange the jobs found in Step 1; call u the resulting sequence;
repeat Step 1.

The complexity of Step 1 in Restricted 2-0pt is OeM N 2). This exchange
strategy has also been proposed by Finke and Roger (see Roger (1990)).

9.3.6 Load-and-Optimize strategy

Consider again a job sequence u and the matrix P obtained by permuting
the columns of A according to u. Applying KTNS to P results in a new
matrix T, each column of which contains exactly C ones (the j-th column of
T describes the loading of the tool magazine while the j-th job in u is being
processed). Suppose now that we look at T as defining a new instance of
the tool switching problem (with capacity C). IT we can find for T a better
sequence than u, then this sequence will obviously be a better sequence than
u for the original matrix A as well. On the other hand, the problem instance
(T, C) is a little bit easier to handle than the instance (A, C). Indeed, since
each column of T contains C ones, the tool switching problem (T, C) can
be reformulated as a TS problem, as explained in Subsections 9.3.1, 9.3.2,
9.3.3. These observations motivate our Load-and-Optimize strategy:

Step 1 permute the columns of A according to u and apply KTNS;
call T the resulting matrix.

Step 2 compute an optimal sequence u' for the tool switching instance
(T,C).

Step 3 if u' is a better sequence than u for A, then replace u by u' and
repeat Step 1; else return u and stop.

From a practical viewpoint, we have found it easier to slightly alter this
basic strategy, in the following way. In Step 2, rather than computing an
optimal sequence for T (which is computationally demanding), we simply
use the farthest insertion heuristic to produce a good sequence u' (as in
Subsection 9.3.1). On the other harid, in Step 3, we accept the new sequence
u' even if it entails the same number of setups as u. We only stop when 10
iterations of the procedure have been executed without producing a strictly
improved sequence. In the sequel, we also refer to this variant as "Load-and­
Optimize" .

Section 9.4 209

9.4 Computational experiments

9.4.1 Generation of problem instances

We tested our heuristics on 160 random instances of the tool switching prob­
lem. Of course, tool-job matrices occurring in practice may have character­
istics not present in the ones we generated. For instance, as pointed out
by an anonymous referee, realistic m~trices are likely to display inter-row
and inter-column' correlations, as well as "tool dusters". However, in the
absence of real-world data or even of detailed statistical information about
these, we decided to follow a procedure similar to the one proposed by Tang
and Denardo (1988a) in generating our. test problems.

Each random instance falls into one of 16 instance types, characterized
by the size. (M, N) of the tool-job matrix and by the value C of the capacity.
Accordingly, we denote the type of an instance by a triple (M, N, C). There
are 10 instances of each type. The tool-job matrices are M x N matrices,
where (M,N) is either (10,10), (20,15), (40,30) or (60,40). For each size
(M, N), we also define a pair (Min, Max) of parameters with the following
interpretation:

- Min = lower-bound on the number of tools per job,

- Max = upper-bound on the number of tools per job.

The specific values of these parameters are displayed in Table 9.1.

Problem size Min Max

(10,10) 2 4
(20,15) 2 6
(40,30) 5 15
(60,40) 7 20

Table 9.1

For each problem size (M, N), 10 random matrices A were generated. For
each j = 1,2, ... , N, the j-th column of A was generated as follows. First,
an integer tj was drawn from the uniform distribution over [min, :max]: this
number denotes the number of tools needed for job j, i.e. the number of 1 's
in the j-th column of A. Next, a set Tj of tj distinct integers were drawn
from the uniform distribution over [1, M]: these integers denote the tools
required by job j, i.e. akj = 1 if and only if k is in Tj. Finally, we checked

210 Chapter 9

whether Tj ~ Ti or Ti ~ Tj held for any i < j. If any of these inclusions
was found to hold, then the previous choice of Tj was cancelled, and a new
set Tj was generated (Tang and Denardo (1988a) and Bard (1988) have
observed that any column of A contained in another column can be deleted
without affecting the optimal solution of the problem; thus, we want to make
sure that our problem instances actually involve N columns, and cannot be
reduced by this simple trick). Notice that this generation procedure does
not a priori prevent the occurrence of null rows in the matrix. In practice,
only two of the 40 matrices that we generated contained null rows (these
were two (20,15) matrices, containing respectively one and three null rows).

A problem instance of type (M, N, C) is now obtained by combining an
M x N tool-job matrix A with one of the four capacities Ct, C2 , C3 and C4

displayed in Table 9.2.

Problem size C1 C2 C3 C4

(10,10) 4 5 6 7
(20,15) 6 8 10 12
(40,30) 15 17 20 25
(60,40) 20 22 25 30

Table 9.2

We will see that the performance of some heuristics strongly depends on the
value of the ratio max / C. We call sparse those problem instances for which
max / C is small, and dense those for which the ratio is close to 1. NotiCe, in
particular, that all instances of type (M,N,CI) have max/C1 = 1. Varying
the capacity as indicated in Table 9.2 will allow us to examine the behavior
of our heuristics under different sparsity conditions. Let us mention here
that, according to the empirical observation of many real-world systems
described by Forster and Rirt (1989), sparse instances are probably more
"realistic" than dense ones. But of course, this conclusion is very much
system-dependent.

9.4.2 Computational results

All heuristics described in Section 9.3 have been implemented in Turbo Pas­
cal and tested on the problem instances described above. The experiments
were run on an AT personal computer equipped with an 80286 micropro­
cessor and an additional 80287 coprocessor. Since our primary goal was

Section 9.4 211

to compare the quality of the solutions produced by the heuristics, no sys­
tematic attempts were made to optimize the running time of the codes.
Accordingly, we will not report here on precise computing times, but simply
give some rough indication of the relation between the times required by the
various methods.

The performance of heuristic H on problem instance I is measured in
terms of "percentage above the best solution found" , namely, by the quan­
tity:

6H(I) = (H(I) - Best (I)) .100
Best (I) ,

where H(I) is the number of tool setups required by the job sequence pro­
duced by heuristic H, and Best (I) is the number of setups required by the
best sequence found by any of our heuristics.

For information, Table 9.3 indicates the evolution of Best (I) as a func­
tion of the problem type (average of Best (1") over all ten instances of each
type). All subsequent tables (Tables 9.4, 9.5, 9.6 report averages and (in
brackets) standard deviations of 6H(I) over all instances I of a given type.

Tool magazine capacity

Problem size Ct C2 C3 C4

(10,10) 13.2 11.2 10.3 10.1
(20,15) 26.5 21.6 20.0 19.6
(40,30) 113.6 95.9 76.8 56.8
(60,40) 211.6 189.7 160.5 127.4

Table 9.3

212 Chapter 9

Heuristic (10,10, (20,15, (40,30, (60,40,
C =4) C = 6) C = 15) C = 20)

Shortest edge 12.4 (6.8) 23.9 (9.8) 20.3 (3.1) 18.8 (3.4)
Farthest Insertion 12.1 (9.8) 15.5 (8.6) 9.6 (5.3) 6.9 (2.7)
Nearest Neighbor 13.7 (7.8) 19.8 (7.7) 21.0 (6.0) 18.9 (3.5)
Branch-and-Bound 12.6 (4.6) 16.2 (5.8) 12.4 (4.3) 10.9 (2.9)

Table 9.4

Table 9.4 compares the behavior of the four traveling salesman heuristics
described in Subsection 9.3.1. We will see later that TS heuristics perform
best on dense instances, and tend to behave very badly on sparse instances.
Therefore, we limit ourselves here to a comparison of these heuristics on the
densest instances, that is, those instances where C = Ct = max.

From Table 9.4, it appears that on average, and mostly for large in­
stances, Farthest Insertion yields better solutions than the other TS heuris­
tics. Farthest Insertion is also a very fast heuristic, which produces solutions
in a matter of seconds (about 30 seconds for the largest instances). The
Shortest Edge and Nearest Neighbor heuristics are even faster, but Farthest
Insertion presents in our view the best quality vs. efficiency trade-off. Thus,
we will select Farthest Insertion as our "winner" among TS heuristics, and
no longer report on the other TS heuristics in the sequel.

A similar comparison between the two block minimization heuristics pre­
sented in Subsection 9.3.2 would lead to similar conclusions. Here again, FI
is slightly better and slightly slower than NN. In the remainder of this sec­
tion, we only report on the performance of FI, and no longer of NN.

Tables 9.5 displays the performance of "constructive" and "improve­
ment" heuristics over our complete sample of problem instances. The results
(averages and standard deviations) for each heuristic are given in different
columns.

The results presented under the labels "2-0pt" or "Load-and-Optimize"
have been obtained by first picking a random job sequence, and then apply­
ing the corresponding improvement strategies to it. The columns labelled
"Random" provide, for the sake of comparison, the number of tool setups
entailed by the initial random job sequence.

Section 9.4 213

Farthest FI Block Simple Multiple-Start
(M,N,C) Insertion Minimization Greedy Greedy
(10,10,4) 12.1 (9.8) 14.3 (7.7) 12.3 (6.3) 4.6 (3.8)
(10,10,5) 19.0 (7.8) 13.6 (7.6) 8.1 (6.0) 3.7 (4.6)
(10,10,6) 17.8 (10.8) 9.7 (6.4) 5.7 (4.7) 2.9 (4.4)
(10,10,7) 11.7 (10.3) 3.9 (4.8) 1.0 (3.0) 0.0 (0.0)
(20,15,6) 15.5 (8.6) 12.0 (4.2) 13.7 (7.0) 4.6 (3.5)
(20,15,8) 37.3(10.8) 13.9 (8.4) 11.0 (7.3) 4.6 (3.0)
(20,15,10) 30.5 (5.8) 8.3 (6.2) 5.6 (4.3) 1.5 (2.3)
(20,15,12) 15.3 (5.5) 2.1 (3.5) 1.0 (2.1) 0.0 (0.0)
(40,30,15) 9.4 (5.3) 8.8 (4.4) 11.4 (4.8) 6.2 (3.1)
(40,30,17) 16.3 (7.5) 9.4 (3.8) 9.8 (3.5) 5.5 (2.2)
(40,30,20) 33.8 (9.1) 12.1 (3.6) 9.8 (4.2) 3.2 (2.0)
(40,30,25) 39.4 (6.6) 15.0 (2.7) 8.3 (4.9) 2.6 (2.3)
(60,40,20) 6.9 (2.7) 9.7 (2.4) 10.2 (2.6) 5.8 (1.5)
(60,40,22) 9.9 (2.7) 8.7 (2.6) 7.9 (3.1) 3.3 (1.7)
(60,40,25) 21.8 (5.7) 10.5 (3.1) 8.2 (2.8) 2.8 (2.0)
(60,40,30) 36.7 (4.0) 13.1 (3.7) 6.5 (2.4) 1.7 (1.4)

Interval Restricted Global Load-and- Random
(M,N,C) 2-opt 2-opt Optimize
(10,10,4) 22.6 (12.2) 26.0 (7.7) 8.7 (4.7) 5.8 (5.3) 41.2 (18.9)
(10,10,5) 14.1 (14.1) 24.3 (10.1) 7.4 (7.1) 10.1 (7.2) 33.8 16.2)
(10,10,6) 9.7 (11.8) 18.3 (7.7) 3.0 (4.6) 6.7 (4.4) 26.3 (9.1)
(10,10,7) 3.0 (6.4) 9.8 (7.5) 0.0 (0.0) 3.0 (6.4) 13.8 (7.9)
(20,15,6) 25.7 (9.7) 33.6 (7.2) 10.0 (4.3) 12.3 (6.8) 45.9 (8.8)
(20,15,8) 20.4 (9.2) 35.7 (10.8) 9.7 (4.1) 23.8 (8.5) 42.2 (11.8)
(20,15,10) 10.4 (8.2) 24.3 (9.2) 6.4 (7.3) 25.6 (11.7) 30.112.3)
(20,15,12) 3.5 (5.0) 13.6 (8.3) 1.0 (2.0) 16.6 (9.6) 18.1 (11.3)
(40,30,15) 30.5 (4.3) 30.3 (5.0) 6.0 (4.0) 16.6 (5.3) 42.9 (6.1)
(40,30,17) 31.2 (5.4) 31.0 (4.6) 4.5 (3.3) 27.5 (4.3) 44.6 (6.4)
(40,30,20) 30.4 (6.0) 33.0 (6.6) 6.0 (2.9) 35.1 (6.4) 45.5 (8.9)
(40,30,25) 27.8 (6.6) 34.5 (7.4) 6.1 (3.7) 37.8 (7.0) 40.5 (7.1)
(60,40,20) 30.6 (2.7) 25.8 (3.8) 4.8 (2.4) 20.0 (3.8) 37.1 (3.6)
(60,40,22) 29.3 (4.1) 25.4 (2.9) 3.7 (2.6) 25.4 (4.1) ,36.5 (3.5)
(60,40,25) 30.2 (3.6) 29.7 (3.0) 2.1 (1.9) 35.5 (4.3) 38.0 (3.6)
(60,40,30) 28.8 (3.4) 30.1 (3.3) 4.5 (2.7) 36.7 (4.4) 37.6 (3.8)

Table 9.5 Average (and standard deviation) of oH(I)

214 Chapter 9

Let us now try to sketch some of the conclusions that emerge from this
table. Consider first the case of dense instances, that is, the instances of
type (10,10,4),(20,15,6),(40,30,15) and (60,40,20). As the size of these
instances increases, the ranking of the solutions delivered by the various
heuristics seems to become more or less stable. Namely, Multiple-Start
Greedy and Global2-0pt produce (on the average) the best results. Next
comes a group made up of Farthest Insertion, Simple Greedy and FI Block
Minimization, which usually yield solutions of slightly lower quality. Finally,
the worst solutions are produced by Load-and-Optimize, Restricted 2-0pt
and Interval (and, as expected, the random procedure).

We get a somewhat different ranking of the heuristics when we look at
sparse instances. Consider e.g. the instances of type (10,10,7), (20,15,12),
(40,30,25),(60,40,30). Multiple-Start Greedy, Global2-0pt, Simple Greedy
and FI Block Minimization remain, in that order , the best heuristics. But
Farthest Insertion performs now almost as badly as the random procedure!
As a matter of fact, for larger instances, it appears that the performance
of Farthest Insertion deteriorates very systematically as sparsity increases.
This behavior is matched by all other TS heuristics (Shortest Edge, Near­
est Neighbor, and B& B). It can be explained by observing that, for sparse
instances, the bounds Ib(i,j) tend to be poor estimates of the number of
switches required between jobs i and j (see Subsections 9.3.1 and 9.3.3).

Our conclusion at this point would be that, if we are only concerned with
the quality of the solution produced by each heuristic, then Multiple-Start
Greedy and Global 2-0pt come out the winners, while Simple Greedy and
FI Block Minimization are good contenders. For dense problems, Farthest
Insertion also is a very good technique.

This first picture becomes more nuanced when we also take comput­
ing times into account. Indeed, the various heuristics run at very different
speeds. For instance, solving an instance of type (10,10,4) takes about 0.30
seconds by Farthest Insertion, FI Block Minimization or by Simple Greedy,
2 seconds by Global 2-opt and 3 seconds by Multiple-Start Greedy. More
strikingly, the instances oftype (60,40,20) require about 30 seconds by Far­
thest Insertion or by FI Block Minimization, 1.5 minutes by Simple Greedy,
30 minutes by Global 2-0pt, and 1 hour by Multiple-Start Greedy (these
times are rather stable, for a given method, over all instan<;es of the same
type). Even though some of these procedures could certainly be accelerated
by implementing them more carefully, it is probably safe to say that the first
three heuristics are fast, while the latter two are computationally more de­
manding. Therefore, for those applications where a solution of high quality

Section 9.4 215

has to be found quickly, FI Block Minimization and Simple Greedy seem to
be perfectly adequate procedures (as well as Farthest Insertion, for dense
instances). On the other hand, when computing time does not matter too
much, and the thrust is instead on the quality of the solution, Multiple Start
Greedy and Global 2-0pt could be considered.

Table 9.6 contains the results of our experiments with composite heuris­
tics. The idea is here to quickly compute a good job sequence using one of the
constructive heuristics, and to subsequently improve it by relying on some
improvement strategy. In view of our previous experiments, we consider five
ways to produce an initial solution (namely, by Farthest Insertion, FI Block
Minimization, Simple Greedy, Interval and by a random procedure), and we
choose Global 2-0pt as improvement strategy.

Farthest FI Block Simple Interval Global
(M,N,C) Insertion Minimization Greedy 2-opt
(10,10,4) 5.0 (5.5) 8.7 (6.9) 5.4(3.6) 6.9 (4.5) 8.7 (4.7)
(10,10,5) 8.3 (5.3) 7.3 (7.1) 5.3 (5.5) 3.6 (4.4) 7.4 (7.1)
(10,10,6) 4.9 (4.9) 2.9(4.4) 1.9 (3.8) 2.0 (4.0) 3.0 (4.6)
(10,10,7) 2.0 (4.0) 1.0 (3.0) 0.0 (0.0) 1.0 (3.0) 0.0 (0.0)
(20,15,6) 6.3 (5.1) 6.4 (3.8) 6.6 (3.8) 4.7 (2.9) 10.0 (4.3)
(20,15,8) 12.3 (6.4) 6.2 (4.9) 7.1 (3.4) 8.9 (5.5) 9.7 (4.1)
(20,15,10) 5.0 (5.5) 3.6 (4.0) 3.9 (3.0) 3.9 (5.2) 6.4 (7.3)
(20,15,12) 1.5 (3.2) 0.0 (0.0) 0.5 (1.5) 1.0 (3.0) 1.0 (2.0)
(40,30,15) 2.5 (3.1) 2.8 (2.0) 5.3 (4.3) 5.3 (3.1) 6.0 (4.0)
(40,30,17) 3.1 (1.3) 3.0 (2.5) 5.0 (2.4) 6.5 (2.6) 4.5 (3.3)
(40,30,20) 6.6 (4.1) 3.4 (2.1) 5.3 (2.7) 6.6 (2.9) 6.0 (2.9)
(40,30,25) 7.7 (3.0) 3.9 (2.2) 4.6 (3.4) 9.1 (5.1) 6.1 (3.7)
(60,40,20) 1.5 (1.6) 2.2 (1.8) 5.2 (1.5) 5.0 (1.5) 4.8 (2.4)
(60,40,22) 2.0 (2.4) 2.6 (2.1) 2.5 (2.3) 2.7 (2.0) 3.7 (2.6)
(60,40,25) 3.7 (1.7) 2.7 (2.0) 2.3 (2.5) 4.1 (3.4) 2.1 (1.9)
(60,40,30) 3.2 (2.7) 1.6 (2.0) 2.4 (2.0) 3.7 (1.5) 4.5 (2.7)

Table 9.6 Average (and standard deviation) of bH(I) for composite
heuristics

We see from Table 9.6 that, for dense instances, Farthest Insertion usually
provides a very good initial solution, while FI Block Minimization always
performs among the best for sparser instances. But in fact, surprisingly
enough, all initialization procedures for Global 2-0pt (including the random
one) come extremely close to each other, in terms of the quality of the

216 Chapter 9

solution produced. Also, their running times do not differ significantly.

9.5 Lower bounds

In order to judge of the quality of the heuristics described above, it would
have been desirable to know tight and easily computed lower bounds on the
cost of an optimal job sequence. The knowledge of such lower bounds would
also be a prerequisite for the development of an exact optimization procedure
(e.g. ofthe branch-and-bound type) for the tool switching problem. At this
moment, unfortunately, we do not have very good lower-bounding procedures
for our problem. We now briefly discuss some of the directions which may be
worth exploring in this regard. In this discussion, we denote by cost (A, C)
the total number of setups required by an optimal sequence for the problem
instance (A, C).

9.S.1 Traveling salesman paths

Since the quantity lb(i, j) introduced in Subsection 9.3.1 is a lower bound on
the number of tool switches incurred between job i and job j in any sequence,
the length of a shortest TS path in the graph G = (V, E, Ib) certainly is a
lower bound for the total number of switches in the optimal sequence (see
Subsection 9.3.1). In other words, denoting by L(A, C) the length of such
an optimal path, we see that L(A, C) + C is a lower bound on cost (A, C)
(Tang and Denardo (1988». Our computational experiments indicate that
this bound is generally extremely weak.

The lower bound L(A, C) + C can sometimes be improved by relying on
the following observations. It is obvious that, if (A', C) is a new problem
instance obtained by deleting some jobs from A (i.e., the columns of A'
form a subset of the columns of A), then the number of setups required for
(A', C) is never larger than the number of setups required for (A, C), i.e.
cost (A', C) ~ cost (A, C). Thus, in particular, L(A', C) + C is a lower bound
on cost(A,C). But it may happen that L(A,C) < L(A',C), in which case
L(A', C) + C is a sharper bound than L(A, C) + C.

Example 9.2 Consider the instance (A, C) described in Tang and Denardo
(1988a). Mter some reductions, the instance involves 6 jobs; and the matrix
lb(i,j) is given by:

Section 9.5 217

2 3 2 2 1
2 3 1 0 1

lb = 2 3 3 2 2
2 1 3 2 2
2 0 2 2 2
1 1 2 2 2

The path (3, 6, 1, 4, 2, 5) is a shortest TS path with respect to lb. Its
length is L(A, C) = 6. On the other hand, deleting the second job from this
instance results in an instance (A', C) for which the shortest Hamiltonian
path (3, 6, 1, 4, 5) has length L(A', C) = 7. Since the sequence (3, 6, 1,
2, 4, 5) requires precisely 7 switches (see Tang and Denardo (1988a)), we
conclude that this sequence is optimal for the instance (A, C). 0

An interesting question is how the partial instance (A', C) should be
(heuristically) picked in order to raise as much as possible the lower bound
L(A', C) + C. This question has not been investigated yet.

9.5.2 Structures implying extra setups

Another approach for obtaining lower bounds on cost(A, C) is to identify
subsets of tools for which extra setups are needed in any sequence. This can
for instance be done as follows. Let K be a subset of rows (viz. tools), and
J a subset of columns (viz. jobs) of A. Say that a job j E J is heavy (with
respect to J and K) if, for every partition of J into J1 U {j} U h (J1 and h
nonempty),

\{k E K : akj = 1}\ + \{k E K : akj = 0 and akr = aka = 1

for some r E J1, s E J2 }\ > C. (9.1)

The idea behind this definition is easy to grasp: the left-hand side of (9.1)
represents the number of tools required to process job j (akj = 1), plus the
number of tools which are not required by j (akj = 0), but which are used
before and after j in a sequence of the form (h, j, J2) (akr = aka = 1). Now,
we have:

Theorem 9.3 If J contains three heavy jobs with respect to J and K, then,
in any sequence, at least one tool of K incurs an extra setup.

Proof:
Consider any sequence. We can always find a partition J into h U {j} U h

218 Chapter 9

such that j is heavy, J1 and J2 are nonempty, all the jobs in J1 occur before
j in the sequence, and all the jobs in J2 occur after j. It follows directly
from (1) that, among all the tools of K which are needed both in J1 and in
J2, some will not be present in the magazine when job j is processed (since
this would exceed the magazine capacity). Hence, an extra setup will be
necessary for these tools. 0

The statement of Theorem 9.3 is probably too general to be of direct
interest. But it can nevertheless be used to identify some substructures
in the tool-job matrix A which imply extra setups in any sequence. Two
illustrations of such structures are now given.

1) Assume there exist three jobs (say, without loss of generality, j =
1,2,3) and a subset K of tools such that:

(i) each tool in K is used by e1Cactly two of the jobs 1,2,3;

, (li) each of the jobs 1, 2, 3 needs (strictly) more than C - K tools
among those not in K.

Under these conditions, one verifies that the jobs 1,2,3 are heavy with
respect to K; hence, the conclusion of Theorem 9.3 applies.

2) Suppose that J and K are subsets of jobs and tools respectively, such
that:

(i) IJI = IKI ~ 3;

(li) the submatrix of A with column-set J and row-set K is the adja-
cency matrix of a cycle (see Nemhauser and Wolsey (1988»;

(iii) at least three jobs in J require C tools.

Then, the three tools mentioned under (iii) are heavy, and Theorem
9.3 applies again.

Consider now p subsets of tools KI,K2, ••• ,Kp for which we know (e.g.,
using Theorem 9.3) that at least one tool in Ki incurs an extra setup in any
sequence (i = 1,2, .. . ,p). Let K = UiKi. Then, a lower bOllnd on the total
number of extra setups is provided by the optimal value of the following
set-covering problem:

Section 9.5 219

z= minimize L: tk (9.2)
keK

subject to L: tk ~ 1 (i=1,2, ... ,p) (9.3)
keKi

tk E {0,1} (k E K). (9.4)

Hence, Z + M is a lower bound on cost(A, C) (where M is, as always, the
total number of tools).

9.5.3 Valid inequalities

Tang and Denardo (1988a) propose the following formulation of the tool
switching problem (see also Bard (1988». Let Xij = 1 if job i is the j-th
job in a sequence, and Xij = Ootherwisej let tkj = 1 if tool k is on the
machine when the j-th job is processed, and 0 otherwisej let Ykj = 1 if tool k
is setup just before processing the j-th job of the sequence, and 0 otherwise
(k = 1,2, ... ,ly.fj i,j = 1,2, ... ,N). Then,

cost(A, C) = minimize L: L: Ykj
k j

subject to L: Xij = 1

L: Xij = 1
j

L: akiXij :::; tkj
,

L:tkj = C
k

Ykj ~ tkj - tk,j-l

Ykl ~ tkl

Xij E {0,1}

tkj, Ykj E {O, 1}

(j = 1,2, ... ,N)

(i = 1,2, . .. ,N)

(k = 1,2, ... ,Mj

j = 1,2, .. . ,N)
(j = 1,2, .. . ,N)

(k = 1,2, ... ,Mj

j = 2, ... ,N)

(k = 1,2, ... ,M)

(i,j = 1,2, .. . ,N)
(k = 1,2, ... ,Mj

j = 1,2, .. . ,N).

(9.5)

(9.6)

(9.7)

(9.8)

(9.9)

(9.10)

(9.11)

(9.12)

Call SW this 0-1 programming problem. The linear programming relaxation
of SW provides a lower bound on cost(A, C). But this bound is extremely
weak (Tang and Denardo (1988a». One way ofimproving it would be to add

220 Chapter 9

more valid constraints to the formulation of SW. For instance, the following
inequalities are valid for the tool switching problem:

(k= 1,2, ... ,j{)

(notice that these trivial inequalities are not even satisfied, in general, by
an optimal solution to the continuous relaxation of SW). Another family
of valid inequalities can be derived as follows. Let K be a subset of tools
for which we know that at least one extra setup is required in the optimal
sequence (see Theorem 9.3). Then,

L LYkj ~ IKI + 1
keK j

is valid. More generally, if Z is the optimal value of (9.2)-(9.4), then a valid
constraint is given by:

L LYkj ~ IKI + Z.
keK j

More work is needed on the strengthening of the formulation SW.
Still another possible approach would be to replace SW by a formulation

of the tool switching problem using different variables. For instance, one may
want to consider the "dis aggregated" variables tkij, with the interpretation
that tkij = 1 if tool k is set up just after finishing the i-th job and is removed
just after finishing the j-th job. It is easy to write a formulation of our
problem involving only the variables Xij, tkij and Ykj. It is also relatively easy
to derive exponentially many valid inequalities using these variables, which
can in principle be added to the initial formulation in order to strengthen
it. But our preliminary computational experiments along these lines were
quite disappointing, in that they did not allow us to noticeably improve our
previous lower bounds on the optimal value of the problem.

9.5.4 Lagrangian relaxation

Lagrangian relaxation is a classical tool in deriving bounds on the opti­
mal value of an integer programming problem (see Nemhauser and Wolsey
(1988)). For problem SW, one may for instance try to relax the groups of
constraints (9.7) and (9.8). Indeed, as observed by Bard (1988), the resulting
subproblems are then easy to solve (Bard (1988) uses this relaxation scheme
in order to produce a sequence of heuristic solutions for the tool switching

Section 9.5 221

problem). But it is easy to prove that the optimal value of the Lagrangian
dual problem obtained in this way is equal to the optimal value of the linear
relaxation of SW (this is because all extreme points of the system defined
by (9.5), (9.6), (9.9), (9.10) and the relaxation of (9.11), (9.12) are integral;
see Nemhauser and Wolsey (1988)).

The possibility of deriving good lower bounds on cost(A, C) using La­
grangian relaxation is an avenue that should be further explored.

222 Chapter 9

Appendix: Graph-theoretic definitions

In this chapter, a graph G is a triple ofthe form (V, E, d), where:

- V is a finite set; the elements of V are the nodes of G;

- E is a set of pairs of nodes, called edges;

- d is a function which assigns a nonnegative length to each pair of nodes;
we assume that d(u, v) = +00 when {u, v} is not an edge.

A path in a graph is a sequence of nodes, i.e. a permutation of a subset of V.
A traveling salesman path (or TS path) is a permutation of V. The length
of a path (u), . .. , Uk) is by definition:

d(u}, U2) + d(U2,Ua) + ... + d(Uk-l, Uk).

Notice, in particular, that the length of such a path is infinite if some pair
{Ui' Ui+l} is not an edge ofthe graph. The traveling salesman problem on a
graph G can be stated as follows: find a TS path of minimal length in G.

With a graph G = (V, E, d), we can associate another graph H =
(E, 1,6), called the edge-graph of G, and defined as follows:

- each node of H is an edge of G;

- a pair {e, j}, with e, fEE, is an edge of H if and only if the edges e
and f share a common node in G;

- 6(e, J) = 1 if {e, j} is an edge of H, and 6(e, J) = +00 otherwise.

Observe that, in an edge-graph, every TS path has length either lEI - 1
or +00. Consider now the restriction of the traveling salesman problem to
edge-graphs, that is:

Input : a graph G.
Problem P3 : find a TS path of minimal length in the edge-graph of G.

Equivalently, P3 asks whether there exists a TS path of finite length in the
edge-graph of G. Bertossi (1981) proved that this problem is' NP-hard.

We also deal in this chapter with directed graphs. A directed graph is a
triple (V, U, d), where V is defined as for a graph, and:

- U is a set of ordered pairs of nodes, called arcs; i.e., U C V X V;

Appendix: Graph-theoretic definitions 223

- d is a (nonnegative) length function defined on V x V, with the property
that d(u, v) = +00 when (u, v) is not an arc.

So, in a directed graph, d(u, v) may differ from d(v, u). The definitions
of a TS path and of the TS problem extend in a straightforward way for
directed graphs.

References

Aanen, E. (1988), Planning and scheduling in a flexible manufacturing sys­
tem, Ph.D. thesis, University of Twente, Enschede, The Netherlands.

Aboudi, R. and G.L. Nemhauser (1990), An assignment problem with side
constraints: strong cutting planes and separation, in: Economic Decision­
Making: Games, Econometrics and Optimisation, J.J. Gabszewicz,
J.-F. Richard and L.A. Wolsey (editors), Elsevier, Amsterdam, The
Netherlands, 457-471.

Aboudi, R. and G.L. Nemhauser (1991), Some facets for an assignment
problem with side constraints, Operations Research 39, 244-250.

Ahmadi, J., R. Ahmadi, H. Matsuo and D. Tirupati (1995), Component
fixture positioning for printed circuit board assembly with concurrent
operations, Operations Research 43, 444-457.

Ahmadi, J., S. Grotzinger and D. Johnson (1988), Component allocation
and partitioning for a dual delivery placement machine, Operations
Research 36, 176-191.

Akella, R., Y. Choong and S.B. Gershwin (1984), Performance of hierarchi­
cal production scheduling policy, in: Proceedings of the first ORSAjTIMS
Special Interest Conference on Flexible Manufacturing Systems, Ann
Arbor, Michigan, 385-396.

Akker, J.M. van den, C.P.M. van Hoesel and M.W.P. Savelsbergh (1993),
Facet inducing inequalities for single-machine scheduling problems, Mem­
orandum COSOR 93-27, Eindhoven University of Technology, Eind­
hoven, The Netherlands.

226 References

Ammons, J.C., C.B. Lofgren and L.F. McGinnis (1985), A large scale ma­
chine loading problem in flexible assembly, Annals of Operations Re­
search 3, 319-332.

Amoako-Gyampah, K. (1994), A comparative study of FMS tool allocation
and part type selection approaches for a varying part type mix, The
International Journal of Flexible Manufacturing Systems 6, 179-207.

Askin, R.G. and C.R. Standridge (1993), Modeling and analysis of manu­
facturing systems, John Wiley & Sons, New York.

Balas, E. and A. Ho (1980), Set covering algorithms using cutting planes,
heuristics and subgradient optimization: a computational study, Dis­
crete Applied Mathematics 23, 201-229.

Balas, E. and M.J. Saltzman (1989), Facets of the three-index assignment
polytope, Discrete Applied Mathematics 23, 201-229.

Balas, E. and M.J. Saltzman (1991), An algorithm for the three-index as­
signment problem, Operations Research 39, 150-161.

Ball, M.O. and M.J. Magazine (1988), Sequencing of insertions in printed
circuit board assembly, Operations Research 36, 192-201.

Bandelt, H.-J., Y. Crama and F.C.R. Spieksma (1994), Approximation al­
gorithms for multidimensional assignment problems with decomposable
costs, Discrete Applied Mathematics 49, 25- 50.

Bard, J.F. (1988), A heuristic for minimizing the number of tool switches
on a flexible machine, lIE Transactions 20, 382-391.

Bard, J.F. and T.A. Feo (1989), The cutting path and tool selection problem
in computer aided process planning, Journal of Manufacturing Systems
8,17-26.

Bastos, J.M. (1988), Batching and routing: two functions in the operational
planning of flexible manufacturing systems, European Journal of Op­
erational Research 33, 230-244.

Belady, L.A. (1966), A study of ~placement algorithms for virtual storage
computers, IBM Systems Journal 5, 78-101.

References 227

Berrada, M. and K.E. Stecke (1986), A branch and bound approach for ma­
chine load balancing in flexible manufacturing systems, Management
Science 32, 1316-1335.

Bertossi, A.A. (1981), The edge hamiltonian path problem is NP-complete,
Information Processing Letters 13, 157-159.

Birkhoff, G. (1946), Tres observaciones sobre el algebra lineal, Revista Uni­
versidad Nacional de Tucuman, Series A 5, 147-151.

Blazewicz, J. and G. Finke (1994), Scheduling with resource management
in manufacturing systems, European Journal of Operational Research
76, 1-14.

Blazewicz, J., G. Finke, R. Haupt and G. Schmidt (1988), New trends in
machine scheduling, European Journal of Operational Research 37,
303-317.

Booth, K.S. and G.S. Lueker (1976), Testing for the consecutive ones prop­
erty, interval graphs, and graph planarity using PQ-tree algorithms,
Journal of Computer and System Sciences 13,335-379.

Browne, J., D. Dubois, K. Rathmill, S. Sethi and K.E. Stecke (1984), Clas­
sification of flexible manufacturing systems, The FMS Magazine 2,
114-117.

Burkard, R.E. (1984), Quadratic assignment problems, European Journal of
Operational Research 15, 283-289.

Buzacott, J.A. and D.D. Yao (1986), Flexible manufacturing systems: a
review of analytical models, Management Science 32,890-905.

Chaillou, P., P. Hansen and Y. Mahieu (1989), Best network flow bounds
for the quadratic knapsack problem, in: Combinatorial Optimization,
B. Simeone (editor), Springer-Verlag, Berlin, Germany, 225-235.

Chakravarty, A.K. and A. Shtub (1984), Selecting parts andloading flexi­
ble manufacturing systems, in: Proceedings of the first ORSA/TIMS
Special Interest Conference on Flexible Manufacturing Systems, Ann
Arbor, Michigan, 284-289.

Chams, M., A. Hertz and D. de Werra (1987), Some experiments with sim­
ulated annealing for coloring graphs, European Journal of Operational
Research 32, 260-266.

228 References

Chang, Y.-L., R.S. Sullivan, U. Bagchi and J.R. Wilson (1985), Experimental
investigation of real-time scheduling in flexible manufacturing systems,
Annals of Operations Research 3, 355-377.

Charles Stark Draper Laboratory (1984), Flexible Manufacturing Systems
Handbook, Noyes Publications, Park Ridge, New Jersey.

Chung, C.H. (1991), Planning tool requirements for flexible manufacturing
systems, Journal of Manufacturing Systems 10,476-483.

Chvatal, V. (1983), Linear Programming, W.H. Freeman & Co, New York.

CQM (1988), Philips Center for Quantitative Methods, Eindhoven, The
Netherlands.

Crama, Y. and J.J. van de Klundert (1992), Unpublished manuscript.

Crama, Y. and J.J. van de Klundert (1994), Approximation algorithms for
integer covering problems via greedy column generation, RAIRO 28,
283-302.

Crama, Y. and J.J. van de Klundert (1996), Approximate solutions for tool
management problems, Paper presented at the 21th Conference on the
Mathematics of Operations Research, Lunteren, The Netherlands.

Crama, Y., A.W.J. Kolen, A.G. Oerlemans ~d F.C.R. Spieksma (1989),
Throughput rate optimization in the automated assembly of printed cir­
cuit boards, Research Memorandum RM 89.034, Faculty of Economics,
University of Limburg, Maastricht, The Netherlands.

Crama, Y. and J.B. Mazzola (1992), On tool loading dense subhypergraphs
and nonlinear knapsack problems, unpublished manuscript.

Crama, Y. and J.B. Mazzola (1995), Valid inequalities and facets for a
hypergraph model of the nonlinear knapsack and FMS part-selection
problems, Annals of Operations Research 58, 99-128.

Crama, Y. and M. Oosten (1996), Models for machine-part grouping in
cellular manufacturing, to appear in The International Journal of Pro­
duction Research.

Dantzig, G.B. and P. Wolfe (1960), Decomposition principle for linear pro­
grams, Operations Research 8, 101-111.

References 229

Daskin, M., P.C. Jones and T.J. Lowe (1990), Rationalizing tool selection in
a flexible manufacturing system for sheet-metal products, Operations
Research 38, 1104-1115.

Desrosiers, J., F. Soumis and M. Desrochers (1984), Routing with time
windows by column generation, Networks 14,545-565.

Dietrich, B.L., J. Lee and Y.S. Lee (1993), Order selection on a single
machine with high set-up costs, Annals of Operations Research 43,
379-396.

Dupont-Gatelmand, C. (1982), A survey of flexible manufacturing systems,
Journal of Manufacturing Systems 1, 1-16.

EIMaraghy, H.A. (1985), Automated tooling management in fl-exible manu­
facturing, Journal of Manufacturing Systems 4, 1-13.

Farley, A.A. (1990), A note on bounding a class of linear programming
problems, including cutting stock problems, Operations Research 38,
922-923.

Finke, G. and A. Kusiak (1987), Models for the process planning problem
in a flexible manufacturing system, International Journal of Advanced
Manufacturing Technology 2, 3-12.

Fisher, M.L. (1981), The Lagrangean relaxation method for solving integer
programming problems, Management Science 27, 1-18.

Fisher, M.L., R. Jaikumar and L.N. van Wassenhove (1986), A multiplier
adjustment method for the generalized assignment problem, Manage­
ment Science 32, 1095-1103.

Fisk, J. and P.G. McKeown (1979), The pure fixed charge transportation
problem, Naval Research Logistics Quarterly 26, 631-641.

Follonier, J.P. (1994), Minimization of the number of tool switches on a flex­
ible manufacturing machine, Belgian Journal of Operations Research,
Statistics and Computer Science 34, 55-72.

Forster, H.-U. and K. Hirt (1989), Entwicklung einer Handlungsanleitung
zur Gestaltung von Produktionsplanungs- und -Steuerungskonzepten
beim Einsatz flexibler Fertigungssysteme, Schlussbericht zum Forschung­
vorhaben, Nr. S 172, Forschungsinstitut fiir RationaJisierung, Rheinisch­
WestfaJischen Technischen Hochschule, Aachen, Germany.

230 References

Frieze, A.M. (1974), A bilinear programming formulation of the 3-dimensional
assignment problem, Mathematical Programming 7, 376-379.

Frieze, A.M. and J. Yadegar (1981), An algorithm for solving 3-dimensional
assignment problems with application to scheduling a teaching practice,
Journal of the Operational Research Society 32, 989-995.

Fulkerson, D.R. and D.A. Gross (1965), Incidence matrices and interval
graphs, Pacific Journal of Mathematics 15,835-855.

Gallo, G., P.L. Hammer and B. Simeone (1980), Quadratic knapsack prob­
lems, Mathematical Programming Study 12, 132-149.

Gallo, G. and B. Simeone (1988), On the supermodular knapsack problem,
Mathematical Programming 45, 295-309.

Garey, M.R. and D.S. Johnson (1979), Computers and intractability: a guide
to the theory of NP-completeness, W.H. Freeman & Co, New York.

Garey, M.R., D.S. Johnson, B.B. Simons and R.E. Tarjan (1981), Schedul­
ing unit-time tasks with arbitrary release times and deadlines, SIAM
Journal on Computing 10, 256-269.

Gerwin, D. (1982), Do's and don'ts of computerized manufacturing, Harvard
Business Review 60, 107-116.

Gilmore, P.C. and R.E. Gomory (1961), A linear programming approach to
the cutting-stock problem, Operations Research 9,849-859.

Glover, F. (1989), Tabu search - part I, ORSA Journal on Computing 1,
190-206.

Glover, F. (1990), Tabu search - part II, ORSA Journal on Computing 2,
4-32.

Glover, F. and E. Woolsey (1974), Converting the 0-1 polynomial program­
ming problem to a 0-1 linear program, Operations Research 22, 180-
182.

Golden, B.L. and W.R. Stewart (1985), Empirical analysis of heuristics, in:
The Traveling Salesman Problem, E.L. Lawler, J.K. Lenstra, A.H.G.
Rinnooy Kan and D.B. Shmoys (editors), John Wiley & Sons, Chich­
ester, United Kingdom, 207-249.

References 231

Goldschmidt, O. D.S. Hochbaum and G. Yu (1992), Component assembly
in the semiconductor industry: a study of covering graphs and hyper­
graphs, Technical Report ORP92-5, the University of Texas at Austin,
Austin, Texas.

Goldschmidt, O. D. Nehme and G. Yu (1992), On the set-union knapsack
problem, Naval Research Logistics 41, 833-842.

Graver, T.W. and L.F. McGinnis (1989), A tool provisioning problem in an
FMS, The International Journal of Flexible Manufacturing Systems 1,
239-254.

Gray, A.E., A. Seidmann and K.E. Stecke (1993), A synthesis of decision
models for tool management in automated manufacturing, Manage­
ment Science 39,549-567.

Greene, T.J. and R.P. Sadowski (1986), A mixed integer program for loading
and scheduling multiple flexible manufacturing cells, European Journal
of Operational Research 24, 379-386.

Groover, M.P. (1980), Automation, Production Systems and Computer­
Aided Manufacturing, Prentice-Hall, Englewood Cliffs, New Jersey.

Gruver, W.A. and M.T. Senninger (1990), Tooling management in FMS,
Mechanical Engineering 112, 40-44.

Hammer, P.L. and D. Rader (1994), Efficient methods for solving quadratic
0-1 knapsack problems, Rlltcor Research Report 40-94, Rutgers Uni­
versity, New Brunswick, New Jersey.

Hansen, P. and L. Kaufman (1973), A primal-dual algorithm for the three­
dimensional assignment problem, Cahiers du Centre d'Etudes de Re­
cherche Operationnelle 15,327-336.

Hartley, J. (1984), FMS at work, IFS Publications, Bedford, United King­
dom.

Hirabayashi, R., H. Suzuki and N. Tsuchiya (1984), Optimal tool module
design problem for NC machine tools, Journal of the Operations Re­
search Society of Japan 27, 205-228.

Hoffman, A.J., A.W.J. Kolen and M. Sakarovitch (1985), Totally balanced
and greedy matrices, SIAM Journal on Algebraic and Discrete Methods
6,721-730.

232 References

Holstein, W.K. (1968), Production planning and control integrated, Harvard
Business Review 46, 121-140.

Holyer, I. (1981), The NP-completeness of some edge-partition problems,
SIAM Journal on Computing 10,713-717.

Huang, P.Y. and C. Chen (1986), Flexible manufacturing systems: an
overview and bibliography, Production and Inventory Management,
Third Quarter, 80-90.

Hwang, S. (1986), A constraint-directed method to solve the part selection
problem in flexible manufacturing systems planning stage, in: FMS,
Operations Research Models and Applications, K.E. Stecke and R.
Suri (editors), Elsevier, Amsterdam, The Netherlands, 297-309.

Hwang, S.S. and A.W. Shogan (1989),. Modelling and solving an FMS part
selection problem, International Journal of Production Research 27,
1349-1366.

Jaikumar, R. (1986), Postindustrial manufacturing, Harvard Business Re­
view 64, 69-76.

Jaikumar, R. and L.N. van Wassenhove (1989), A production planning
framework for flexible manufacturing systems, Journal of Manufactur­
ing and Operations Management 2, 52-79.

Jain, A.K., G. Kasilingam and S.D. Bhole (1991), Joint consideration of
cell formation and tool provisioning problems in flexible manufacturing
systems, Computers and Industrial Engineering 20,271-277.

Jaumard, B., P. Hansen and M. Poggi de Aragao (1991), Column generation
methods for probabilistic logic, ORSA Journal on Computing 3, 135-
148.

Johnson, D.S., C.R. Aragon, L.A. McGeoch and C. Schevon (1989), Opti­
mization by simulated annealing: an experimental evaluation; part I,
graph partioning, Operations Research 37, 865-892.

Johnson, D.S., C.R. Aragon, L.A. McGeoch and C. Schevon (1991), Opti­
mization by simulated annealing: an experimental evaluation; part II,
graph coloring and number partioning, Operations Research 39, 378-
406.

References 233

Johnson, D.S. and C.Il. Papadimitriou (1985), Computational complex­
ity, in: The Traveling Salesman Problem, E.L. Lawler, J .K. Lenstra,
A.H.G. Rinnooy Kan and D.B. Shmoys (editors), John Wiley & Sons,
Chichester, United Kingdom, 37-85.

Johnson, E.L., A. Mehrotra and G.L. Nemhauser (1993), Min-cut clustering,
Mathematical Programming 62, 133-151.

Kashiwabara, T. and T. Fujisawa (1979), NP-completeness of the problem
of finding a minimum-clique-number interval graph containing a given
graph as a subgraph, Proceedings of the 1979 International Symposium
on Circuits and Systems, 657-660.

Kavvadias, D. and C.H. Papadimitriou (1989), A linear programming ap­
proach to reasoning about probabilities, Annals of Mathematics and
Artificial Intelligence 1, 189-205.

Kernighan, B.W. and S. Lin (1970), An efficient heuristic procedure for
partioning graphs, The Bell System Technical Journal 49,291-307.

Kim, Y.D. and C.A. Yano (1992), An iterative approach to system setup
problems in flexible manufacturing systems, The International Journal
of Flexible Manufacturing Systems 4, 183-209.

King, J.R. and V. Nakornchai (1982), Machine component group formation
in group technology: review and extension, The International Journal
of Production Research 20, '117-133.

Kiran, A.S. and R.J. Krason (1988), Automating tooling in a flexible man­
ufacturing system, Industrial Engineering, April, 52-57.

Kiran, A.S. and B.C. Tansel (1986), The system set-up in FMS: concepts
and formulation, in: FMS, Operations Research Models and Appli­
cations, K.E. Stecke and R. Suri (editors), Elsevier, Amsterdam, The
Netherlands, 321-332.

Korte, B. (1989), Applications of combinatorial optimization, in: Mathe­
matical Programming, Recent Developments and Applications, M. Iri
and K. Tanabe (editors), KTK Scientific Publishers, Tokyo, Japan,
1-55.

Kou, L.T. (1977), Polynomial complete consecutive information retrieval
problems, SIAM Journal on Computing 6, 67-75.

234 References

Kouvelis, P. and H.L. Lee (1991), Block angular structures and the loading
problem in flexible manufacturing systems, Operations Research 39,
666-676.

Kuhn, H. (1990), Einlastungsplanung von flexiblen Fertigungssystemen, PhysicCl
Verlag, Heidelberg, Germany.

Kumar, K.R., A. Kusiak and A. Vanelli (1986), Grouping parts and compo­
nents in flexible manufacturing systems, European Journal of Opera­
tional Research 24, 387-397.

Kusiak, A. (1985a), Flexible manufacturing systems: a structuml approach,
International Journal of Production Research 23, 1057-1073.

Kusiak, A. (1985b), Integer progmmming approaches to process planning,
International Journal of Advanced Manufacturing Technology 1, 73-
83.

Kusiak, A. (1985c), The part families problem in flexible manufacturing
systems, Annals of Operations Research 3, 279-300.

Kusiak, A. (1986), Application of opemtional research models and techniques
in flexible manufacturing systems, European Journal of Operational
Research 24, 336-345.

Laarhoven, P.J.M. van, and E.H.L. Aarts (1987), Simulated Annealing: The­
ory and Applications, D. Reidel Publishing Company, Dordrecht, The
Netherlands.

Laarhoven, P.J.M. van, and W.H.M. Zijm (1993), Production prepamtion
and numerical control in PCB assembly, The International Journal of
Flexible Manufacturing Systems 5, 187-207.

Lawler, E.L. (1976), Combinatorial optimization: networks and matroids,
Holt, Rinehart and Winston, New York.

Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (ed­
itors) (1985), The tmveling salesman problem, John ,Wiley & Sons,
New York.

LeipaUi" T. and O. Nevalainen (1989), Optimization of the movements of
a component placement machine, European Journal of Operational
Research 38, 167-177.

References 235

Looveren, A.J. van, L.F. Gelders and L.N. van Wassenhove (1986), A re­
view of FMS planning models, in: Modelling and design of flexible
manufacturing systems, A. Kusiak (editor), Elsevier, Amsterdam, The
Netherlands, 3-31.

Mamer, J.W. and A.W. Shogan (1987), A constrained capital budgeting
problem with applications to repair kit selection, Management Science
27, 800-806.

Mattson, R., J. Gecsei, D.R. Slutz and 1.1. Traiger (1970), Evaluation tech­
niques for storage hierarchies, IBM Systems Journal 9,78-117.

Mazzola, J.B., A.W. Neebe and C.V.R. Dunn (1989), Production planning
of a flexible manufacturing system in a material requirements plan­
ning environment, The International Journal of Flexible Manufactur­
ing Systems 1, 115-142.

McGeoch, L.A. and D.D. Sleator (1991), A strongly competitive randomized
paging algorithm, Algorithmica 6, 816-825.

Minoux, M. (1987), A class of combinatorial problems with polynomially
solvable large scale set covering/partioning relaxations, RAIRO 21,
105-136.

Mohring, R.H. (1990), Graph problems related to gate matrix layout and
PLA folding, in: Computational Graph Theory, G. Tinhofer et al.
e editors), Springer-Verlag, Wien, Austria, 17-51.

Moreno, A.A. and F.-Y. Ding (1993), Heuristics for the FMS-Ioading and
part-type-selection problems, The International Journal of Flexible Man­
ufacturing Systems 5, 287-300.

Mont azeri , M. and L.N. van Wassenhove (1990), Analysis of scheduling
rules for an FMS, International Journal of Production Research 28,
785-802.

Mullins, P. (1990), PCB assembly: a total package, Production 102, 60-61.

Nemhauser, G.L. and L.A. Wolsey (1988), Integer and combinatorial opti­
mization, John Wiley & Sons, New York.

Oerlemans, A.G. (1992), Production planning for flexible manufacturing
systems, Ph.D. thesis, University of Limburg, Maastricht, The Nether­
lands.

236 References

Panwalker, S.S. and W. Iskander (1977), A survey of scheduling rules, Op­
erations Research 25,45-61.

Papadimitriou, C.H. and K. Steiglitz (1982), Combinatorial optimization:
algorithms and complexity, Prentice Hall, Englewood Cliffs, New Jer­
sey.

Privault, C. (1994), Modeles mathematiques pour la gestion off-line et on­
line des changements d'outils sur une machine flexible, Doctoral thesis,
Universite Joseph Fourier, Grenoble, France.

Privault, C. and G. Finke (1993), Tool management on NC machines, in:
Proceedings of the International Conference on Industrial Engineering
and Production Management, Mons, Belgium, 142-161.

Rajagopalan, S. (1985), Scheduling problems in flexible manufacturing sys­
tems, Working Paper, Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, Pennsylvania.

Rajagopalan, S. (1986), Formulation and heuristic solutions for parts group­
ing and tool loading in flexible manufacturing systems, in: FMS, Op­
erations Research Models and Applications, K.E. Stecke and R. Suri
(editors), Elsevier, Amsterdam, The Netherlands, 311-320.

Ranky, P.G. (1983), The Design and Operation of an FMS, IFS/North­
Holland, Amsterdam, The Netherlands.

Ribeiro, C.C., M. Minoux, and M.C. Penna (1989), An optimal column­
generation-with-ranking algorithm for very large scale set partioning
problems in traffic assignment, European Journal of Operational Re­
search 41, 232-239.

Roger, C. (1990), La gestion des outils sur machines Ii commande numerique,
Memoire DEA de Recherche Operationnelle, Universite Joseph Fourier,
Grenoble, France.

Shanker, K. and Y.J. Tzen (1985), A loading and dispatching problem in a
random flexible manufacturing system, International Journal of Pro­
duction Research 23, 579-595.

Singhal, K., C.H. Fine, J.R. Meredith and R. Suri (1987), Research and
models for automated manufacturing, Interfaces 17,5-14

References 237

Sodhi, M.S., A. Agnetis and R.G. Askin (1994), Tool addition strategies for
flexible manufacturing systems, The International Journal of Flexible
Manufacturing Systems 6, 287-310.

Sousa, J.P. and L.A. Wolsey (1992), A time indexed formulation of non­
preemptive single-machine scheduling problems, Mathematical Program­
ming 54, 353-367.

Spieksma, F.C.R. (1992), Assignment and scheduling algorithms in auto­
mated manufacturing, Ph.D. thesis, University of Limburg, Maastricht,
The Netherlands.

Spieksma, F.C.R. and Y. Crama (1992), The complexity of scheduling short
tasks with few starting times, Research Report M92-06, Faculty of
General Sciences, University of Limburg, Maastricht, The Netherlands.

Spieksma, F.C.R., K. Vrieze and A.G. Oerlemans (1990), On the system
setup and the scheduling problem in a flexible manufacturing system
(FMS), Statistica Neerlandica 44, 125-138.

Spieksma, F.C.R. and G.J. Woeginger (1996), Geometric three-dimensional
assignment problems, to appear in the European Journal of Opera­
tional Research.

Stecke, K.E. (1983), Formulation and solution of nonlinear integer produc­
tion planning problems for flexible manufacturing systems, Manage­
ment Science 29, 273-288.

Stecke, K.E. (1985), Design, planning, scheduling and control problems of
flexible manufacturing systems, Annals of Operations Research 3, 3-
12.

Stecke, K.E. (1988), O.R. applications to flexible manufacturing, in: Oper­
ational Research '87, G.K. Rand (editor), 287-324.

Stecke, K.E. (1989), Algorithms for efficient planning and operation of a
particular FMS, The International Journal of Flexible Manufacturing
Systems 1,287-324.

Stecke, K.E. and I. Kim (1988), A study of FMS part type selection ap­
proaches for short-term production planning, The International Jour­
nal of Flexible Manufacturing Systems 1, 7-29.

238 References

Stecke, K.E. and J.J. Solberg (1981), Loading and control policies for a flex­
ible manufacturing system, International Journal of Production Re­
search 19,481-490.

Stecke, K.E. and F.B. Talbot (1985), Heuristics for loading flexible manu­
facturing systems, in: Flexible Manufacturing: recent developments in
FMS, Robotics, CAD/CAM, CIM, A. Raouf and S.1. Ahmad (editors),
Elsevier, Amsterdam, The Netherlands, 73-85.

Suri, R. (1985), An overview of evaluative models for flexible manufacturing
systems, Annals of Operations Research 3, 13-21.

Suri, R. and C.K. Whitney (1984), Decision support requirements in flexible
manufacturing, Journal of Manufacturing Systems 3, 61-69.

Tang, C.S. and E.V. Denardo (1988a), Models arising from a flexible manu­
facturing machine, part I: minimization of the number of tool switches,
Operations Research 36, 767-777.

Tang, C.S. and E.V. Denardo (1988b), Models arising from a flexible man­
ufacturing machine, part II: minimization of the number of switching
instants, Operations Research 36, 778-784.

Vasko, F.J. and F.E. Wolf (1988), Solving large set covering problems on a
personal computer, Computers and Operations Research 15, 115-121.

Veeramani, D., D.M. Upton and M.M. Barsh (1992), Cutting-tool manage­
ment in computer-integrated manufacturing, The International Journal
of Flexible Manufacturing Systems 3/4, 237-265.

Ventura, J.A., F.F. Chen and M.S. Leonard (1988), Loading tools to ma­
chines in flexible manufacturing systems, Computers and Industrial
Engineering 15, 223-230.

Vliet, M. van, and L.N. van Wassenhove (1989), Operational research tech­
niques for analyzing flexible manufacturing systems, Research Memo­
randum series, No. Ti-1989/16, Tinbergen Institute, Erasmus Univer­
sity Rotterdam, Rotterdam, The Netherlands.

Volgenant, T. and R. Jonker (1982), A branch and bound algorithm for the
symmetric traveling salesman problem based on the J-tree relaxation,
European Journal of Operational Research 9, 83-89.

References 239

Warnecke, H.-J. and R. Steinhilper (1985), Flexible Manufacturing Systems,
IFS Publications, Springer-Verlag, Berlin, Germany.

Werra, D. de, and M. Widmer (1990), Loading problems with tool manage­
ment in FMSs: a few integer programming models, The International
Journal of Flexible Manufacturing Systems 3, 71-82.

Whitney, C.K. and T.S. Gaul (1985), Sequential decision procedures for
batching and balancing in FMSs, Annals of Operations Research 3,
301-316.

Widmer, M. (1991), Job shop scheduling with tooling constraints: a tabu
search approach, Journal of the Operations Research Society 42, 75-
82.

Zeestraten, M.J. (1989), Scheduling flexible manufacturing systems, Ph.D.
Thesis, Delft University of Technology, Delft, The Netherlands.

Zijm, W.H.M. (1988), Flexible manufacturing systems: background, exam­
ples and models, in: Operations Research Proceedings 1988, H. Schell­
haas et al. (editors), Springer-Verlag, Heidelberg, Germany, 142-161.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

